Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TU Wien Sets New Benchmark in Superconducting Vacuum Gap nanoCapacitors

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Vishay Releases Sulfur‑Resistant Chip Resistors

    Würth Elektronik Introduces Lead-Free SMT Spacers

    Schurter Releases EKO HV Fuses up to 1000 VDC, 1100 A

    Empower Releases High-Density Embedded Silicon Capacitors

    TDK Unveils 125C Compact DC Link Film Capacitors

    SCHURTER Releases Coin Cell Supercapacitors for Backup Power

    Skeleton Technologies Expands in U.S. to Power AI Data Centers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TU Wien Sets New Benchmark in Superconducting Vacuum Gap nanoCapacitors

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Vishay Releases Sulfur‑Resistant Chip Resistors

    Würth Elektronik Introduces Lead-Free SMT Spacers

    Schurter Releases EKO HV Fuses up to 1000 VDC, 1100 A

    Empower Releases High-Density Embedded Silicon Capacitors

    TDK Unveils 125C Compact DC Link Film Capacitors

    SCHURTER Releases Coin Cell Supercapacitors for Backup Power

    Skeleton Technologies Expands in U.S. to Power AI Data Centers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Ripple Steering in Coupled Inductors: SEPIC Case

27.8.2025
Reading Time: 3 mins read
A A

prof. Sam Ben-Yaakov in this video explains ripple steering in coupled inductors and provide case study on SEPIC converters.

This presentation explores the concept of ripple steering within coupled inductors, with a specific focus on SEPIC (Single-Ended Primary Inductor Converter) configurations.

RelatedPosts

Calculating Resistance Value of a Flyback RC Snubber 

One‑Pulse Characterization of Nonlinear Power Inductors

Thermistor Linearization Challenges

1. Introduction:

Ripple steering is a technique used in power electronics to manage and redistribute current ripple between inductors in a coupled system. This presentation revisits the principles of ripple steering, applying them to SEPIC converters, commonly used for their versatile voltage conversion capabilities.

2. SEPIC Converter Configuration:

The SEPIC converter analyzed includes a transistor switch and two coupled inductors with nominal inductances of 50 µH. The inductors exhibit slight variations due to coupling coefficients, which is central to ripple steering mechanisms. The SEPIC converter’s advantage lies in its ability to maintain a transfer ratio both below and above unity, akin to the buck-boost converter.

3. Theoretical Background:

Coupled inductors in switch-mode power supplies (SMPS) require voltage symmetry across the inductors during on/off states to prevent short circuits. Any significant voltage mismatch transforms the coupled inductors into a transformer, potentially causing excessive currents. Minor deviations are mitigated by leakage inductance. The nominal design typically assumes equal inductances and a 1:1 turns ratio.

Ripple steering aims to shift current ripple from one inductor to another, thereby reducing ripple in targeted areas. In SEPIC converters, minimizing input inductor ripple is critical for Electromagnetic Interference (EMI) considerations.

4. Methodology:

Ripple steering is influenced by two main factors:

  • Coupling Coefficient (K): Reducing K increases leakage inductance, affecting ripple distribution.
  • Turns Ratio (KK): Altering KK modifies the current-sharing properties between inductors based on the square root relationship to inductance.

Simulations were conducted using LTspice to analyze ripple behavior under varying K and KK values. The study monitored gate signals and ripple waveforms across inductors L1 and L2.

5. Results:

  • Baseline Case (K=1, KK=1): Ripple currents in L1 and L2 were symmetrical, with peak-to-peak values around 2 A.
  • Modified Coupling (K=0.95, KK=0.9): A reduction in L1 ripple was observed, while L2 ripple remained relatively unchanged, transitioning to a triangular waveform due to higher leakage.
  • Ripple Steering Impact: By sweeping KK between 0.8 and 1.2, significant shifts in ripple distribution were noted. For example, reducing KK to 0.9 decreased L1 ripple considerably, demonstrating up to a 4.5-fold reduction compared to the balanced case.

6. Discussion:

The simulation results confirm that ripple can be effectively steered between inductors by adjusting K and KK. While the phenomenon lacks a comprehensive analytical model, empirical data underscores its potential for practical EMI reduction in SEPIC converters.

7. Conclusion:

Ripple steering in coupled inductors presents a valuable approach for optimizing current ripple in SEPIC converters. The findings highlight the method’s applicability, particularly in scenarios demanding stringent EMI performance. Future work may focus on developing analytical frameworks to predict ripple behavior more accurately.

References:

S. Cuk, “Integrated Magnetics versus Conventional Power Filtering,” INTELEC ’87 – The Ninth International Telecommunications Energy Conference, Stockholm, Sweden, 1987, pp. 61-72, doi: 10.1109/INTLEC.1987.4794530.

Relevant posts:

  • Coupled Inductors in SEPIC versus Flyback Converters

SEPIC Converter Design and Calculation

Related

Source: Sam Ben-Yaakov

Recent Posts

2026 Power Magnetics Design Trends: Flyback, DAB and Planar

13.2.2026
14

Vishay Releases Compact 0806 Low‑DCR Power Inductor

5.2.2026
33

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
116

Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

3.2.2026
30

Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

2.2.2026
36

Calculating Resistance Value of a Flyback RC Snubber 

2.2.2026
50

Bourns Releases High‑Q Air Coil Inductors for RF Aplications

29.1.2026
47

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

28.1.2026
53

ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

28.1.2026
55

Upcoming Events

Feb 24
16:00 - 17:00 CET

Mastering Galvanic Isolation: Ensuring Safety in Power Electronics

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version