Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Role of Couplers, Combiners, and Dividers in Radar Power Amplifiers

26.9.2024
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog explains the role of Couplers, Combiners, and Dividers in radar power amplifiers.

At the most basic level, high-power amplifiers (HPAs) take signals from the waveform generator and increase the signal level to a higher power as shown in Figure 1.

RelatedPosts

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Knowles Releases Inductors for Mission-Critical RF Applications

Learn How Supercapacitors Enhance Power System in Knowles eBook

Depending on the system, the increase could take the signal from hundreds of watts to many megawatts. This is an essential step for many radar systems to boost the strength of a signal and improve range, resolution, and overall performance. 

HPAs have actually existed for quite some time. For example, PAVE PAWS, which was an early warning radar system, and the first all-solid-state active electronically steered array (AESA), was developed in the 1970s, It had a transmit power of 340W per T/R module, but summed over 1,792 modules, the signal ended up at over 500 kW. However, the efficiency and reliability of PAs has continued to improve over the years as technologies have advanced.

Figure 1. The functional components of a radar system.

An Overview of Solid-State Power Amplifiers

For many RF applications, PAs are based on traveling wave tube (TWT) technology, which uses electron beams in a vacuum to achieve high power levels. However, this type of PA can be quite heavy, large, and inefficient, making it challenging to use in size-constrained environments or when precision is required.

Instead, solid-state power amplifiers (SSPAs), which are based on modern semiconductor devices like transistors developed with GaN or GaAs, are generally smaller, lighter, more compact, and offer higher reliability. Therefore, SSPAs can be used to maximize system performance in applications where size, efficiency, and reliability are critical such as satellite communications or many radar systems.

To achieve a higher overall power output efficiently, SSPAs are typically designed using power summation over a series of modules, which provides a graceful degradation capability not found with TWTs. Thus, a basic building block of many all-solid-state HPAs is the PA module (Figure 2).

Figure 2. An example of a single PA module.

In the example shown in Figure 3, the input to the HPA is split four ways and passed through four PA modules. Then, the amplified output from each PA module is combined with a four-way combiner.

Figure 3. A full view of an HPA with four PA modules.

The Role of Couplers, Combiners, and Dividers in the SSPA

When it is necessary to deliver a high level of output power to the antenna, power combiners and dividers are key components needed in the transmitters. Let’s take a closer look at how these components function.

RF power dividers are designed to split an incoming signal into multiple outputs such that there’s a portion of the original signal’s power in each output. These signals are then fed into multiple amplifiers, where each module amplifies a portion of the signal, making it possible to achieve a higher overall power level when the output of the modules is combined again. This is where the power combiners come in, bringing the split signal back into single high-power RF signal that is then transmitted through the radar’s antenna.

Couplers, such as quadrature hybrid couplers, can be used to perform the power splitting or combining while providing improved input match for unbalanced loads. Using a quadrature hybrid coupler for these functions can offer many benefits such as balanced amplification, enhanced signal linearity, and isolation between amplifier modules, which will lead to more efficient and stable RF systems.

Related

Source: Knowles Precision Devices

Recent Posts

YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

30.7.2025
8

KYOCERA AVX Releases New 3dB Hybrid Couplers

1.7.2025
23

Quantic Eulex Presents Ceramic Gap RF Capacitors

12.6.2025
37

Modelithics Releases Components Library v25.0 for Keysight 

12.5.2025
24

Murata Releases 008004 High-Frequency SMD Chip Inductor

12.5.2025
57

KYOCERA AVX Releases Compact High-Directivity Couplers

7.5.2025
36

W-band Self-Biased Circulators for Next Gen VHTS Satellites

1.5.2025
15

CAD-to-FAB Capability to Produce Planar RF Passive Structures

29.4.2025
21

Highly Integrated W-Band Circulators Based on SIW Technology

28.4.2025
19

Characterization of 70GHz Thin Film Chip Resistors

26.4.2025
72

Upcoming Events

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version