Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

    YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

    YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

    Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

    Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

    Vishay Expands Automotive High Frequency Thin Film Chip Resistors

    Advancements and Applications of Switch Capacitor Power Converters

    KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

    YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

    YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

    Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

    Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

    Vishay Expands Automotive High Frequency Thin Film Chip Resistors

    Advancements and Applications of Switch Capacitor Power Converters

    KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Snubber Capacitor Selection for SiC-Based Switching Converters

24.8.2022
Reading Time: 4 mins read
A A

The blog article published by Knowles Precision Devices provides guidance on how to select the optimal snubber capacitor for SiC-based switching converters.

Today, most converter circuits now include semiconductors and switches made of silicon carbide (SiC) instead of plain old silicon (Si). This is because when silicon and carbon are combined, the resulting material, SiC, has excellent mechanical, chemical, and thermal properties. Therefore, SiC-based converters can handle voltages up to 10 times greater than converters using just Si while also offering lower losses.

RelatedPosts

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

Knowles Extends Range and Performance of C0G MLCC Capacitors

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

These characteristics make these converters an excellent option for applications such as power electronics, industrial devices, and electric vehicle (EV) charging stations. In this first post, we dive into the advantages of using snubber circuits to protect SiC-based converters and discuss how to further increase these efficiencies by focusing on capacitor selection.

Using Snubber Circuits for SiC Switching Converters

When switching occurs quickly, dv/dt and di/dt increase, which, when coupled with stray inductance, can result in a large surge voltage and/or current. To be sure you do not exceed the maximum rated voltage/current of the device, a method to control surge voltage and current is needed. One efficient way to do this is to use a snubber circuit. Using a snubber circuit in a switching converter offers the following benefits:

  • Protecting against voltage and/or current spikes
  • Reducing dv/dt and di/dt
  • Smoothing out ringing
  • Keeping loads in safe operating condition range
  • Minimizing losses, oscillation effects, and electromagnetic interference (EMI)
  • Transferring power dissipation

When using SiC as a base material for power switching device, these benefits are magnified as SiC provides the following benefits over using just Si:

  • Higher thermal conductivity to provide more efficient heat transfer
  • Lower leakage currents
  • Ability to withstand a voltage gradient that is more than eight times higher, enabling components to withstand higher voltages in the same package
  • Greater switching frequencies

Different Snubber Circuit Configurations

There are multiple ways to build a snubber circuit in a converter. Figure 1 shows four common configurations.

Figure 1. Diagrams of the four most common snubber circuit configurations with snubber capacitors suitable for SiC converters – (a) C snubber, (b) RC snubber, (c) Discharge RCD snubber, (d) Non-discharge RCD snubber. Source.

Let’s explore each of these configurations a little more. A C snubber has a simpler design that does not include a resistor and is best suited for 2-in-1 modules instead of circuits with discrete components. An RC snubber adds a resistor into the circuit and the energy stored in CSNB must be dissipated by RSNB during each switching transient. Having the resistor in the snubber circuit protects the circuit against larger di/dt as it reduces the discharge current of the capacitor.

For higher power applications, a diode can be added to create an RCD snubber where the diode is used to block current in the network as the transistor turns on. There are two different types of RCD snubbers – discharge and non-discharge. With a discharge RCD snubber, the surge current flows through the diode and makes CSNB absorption more effective than it is in an RC snubber. A non-discharge RCD snubber only consumes energy from the surge voltage, which means the energy consumption at RSNB does not increase a lot at high switching frequencies.

Considerations for Selecting the Right Capacitor for Snubber Circuits

Whether you are designing a snubber for SiC, Si, or GaN technology, as shown in Figure 1, all snubber circuit configurations include a snubber capacitor. However, since SiC has very different characteristics than Si or GaN and is frequently used for applications that need to operate at high voltages and currents, understanding how to select the most appropriate capacitor is crucial.

Snubber capacitors for SiC-based circuits typically have smaller capacitance values and need to sit close to the switches to reduce wire inductance. Therefore, specifications for these capacitors that need to be taken into consideration include the package size and type, dielectric, electrode type, voltage and capacitance range, and Irms. Since SiC parts also tend to run hot, the snubber capacitor must be heat tolerant.

MLCC class 1 ceramic capacitors offer high stability in the form of C0G dielectrics, and can achieve high capacitance and high voltage as seen  optimal snubber capacitor for SiC-based circuits. The capacitors’ portfolio offers a wide range of voltages, from 630V to above 4kV, that can be readily used as snubbers to match the voltage rating of existing high-performance SiC devices in the market. 

See also article: RC snubber design for SMPS protection.

Source: Knowles Precision Devices

Recent Posts

TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

27.6.2025
2

YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

27.6.2025
1

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

26.6.2025
21

Advancements and Applications of Switch Capacitor Power Converters

25.6.2025
20

Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

24.6.2025
13

Samsung Delivers Silicon Capacitors to Marwell AI Systems

24.6.2025
29

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
34

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
19

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
31

VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

17.6.2025
24

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version