Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    Wk 5 Electronics Supply Chain Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    Wk 5 Electronics Supply Chain Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Solar Power Electronics Trends

9.4.2024
Reading Time: 5 mins read
A A

This article based on Knowles Precision Devices blog digs into trends in solar power electronics and its impact on componets requirements.

The developmental trajectory of many modern power electronics systems is driven by evolving carbon dioxide (CO₂) regulations. By maintaining compliance, green energy production, like photovoltaics (PV) and wind, and high-efficiency distribution systems, like high-voltage direct current (HVDC) and battery energy storage systems (BESS), support our transition to a more sustainable future. 

RelatedPosts

Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Here, we’ll focus on a few trends we’re watching in PV, one of the most available and economical energy sources in many parts of the world.

Trend 1: Increasing Voltage

PV cells generate direct current (DC) electricity as they convert sunlight into electrical energy. For this energy to be fed into the electrical grid and used for commercial and residential power, DC must be converted to AC. The conversion is achieved using inverters.

Today, inverter voltage has increased from 500V to 1500V. This is made possible by two main developments. Component costs are lower (and systems require fewer components overall), and more systems feature wide band gap (WBG) filters that are high-voltage capable.

Across power electronics systems, a wider variety of applications have these high-voltage, high-temperature requirements, and it’s sparking new circuit design trends. While the cost of silicon carbide (SiC) diodes and MOSFETs are still limiting their adoption in PV, the industry is starting to understand the advantages of SiC in high-power string inverters. Using these components, manufacturers are designing inverters in the 100kW power range that are much lighter than those designed with insulated-gate bipolar transistors (IGBTs).

Trend 2: Changing Inverter Types in Solar Plants

Large solar plants are shifting their systems to rely on smaller, multi-string configurations that leverage microinverters rather than one central inverter. There are several approaches to a shift like this:

Large Central Inverter Architectures

In traditional PV systems, solar panels are combined in parallel, so the inverter sees one large, combined DC voltage. This arrangement disregards several important real-world conditions. Each PV panel has a different optimal operating point based on its irradiance and temperature. Since the inverter assesses the string of PV panels as a single voltage source, power can’t be optimized on a panel-by-panel basis. While a centralized inverter (Figure 1) is an economical choice at scale, it’s susceptible to the drawbacks of non-optimal maximum power point tracking (MPPT), where the MPPT algorithm doesn’t perfectly align with the actual maximum power point (MPP) of the solar panel array.

String Inverter Architecture

By connecting smaller strings of panels and providing each string with an inverter, the MPP of each string can be optimized, preventing a scenario with a single point of failure; however, each panel can’t be optimized individually. If a string fails to create a high enough DC voltage for its inverter, there are additional inefficiencies to consider. With this string inverter configuration (Figure 2), it’s easier to expand the PV system by adding strings.

Figure 1: Central inverter solar PV power plant architecture example.
Figure 2: String inverter solar PV power plant architecture example.

Multi-String Inverter Architectures

Multi-string inverters (Figure 3) are a variation of the two-stage string inverter. Here, several PV strings are connected to a common DC bus via DC/DC converters. A DC/AC converter exports the energy that was aggregated at the DC bus to the AC system. This configuration retains both the optimal MPP of each string (also achieved by a string inverter) and added flexibility in string design. As a result, this approach is becoming more popular in large-scale solar plants.

Microinverter Architectures

Embracing a modular system configuration, microinverters (Figure 4) accommodate an inverter-per-panel design, minimizing single-point failures. While microinverters are a poor choice for near-ideal conditions (e.g., shading-free solar farms), installations are becoming more complex. There are multi-angled roofs, installation costs to consider and lifetime restraints that limit the effectiveness of central inverter installations in residential and commercial settings. Under these conditions, microinverters are growing in popularity.

Figure 3: Multi-string inverter solar PV power plant architecture example.
Figure 4: Microinverter solar PV power plant architecture example.

Trend 3: A Rising Tide for Solar Energy and Energy Storage Solutions

As the saying goes, a “rising tide raises all boats.” Evolution in solar energy and energy storage solutions is driving progress in adjacent technologies, like PV-powered charging stations for electric vehicles (EVs). With EVs in higher demand, there’s a push for more abundant and efficient charging stations. To accommodate, energy storage systems like BESS are evolving to smooth peaks in electricity generation profiles for PV generation and in the electricity demand profiles from EV charging stations.

HVDC transmission is also achieving greater heights. With massive PV plants generating gigawatts of electrical energy far away from high-demand areas, HVDC grid solutions are poised to reduce energy loss over long-distance transmission.

Related

Source: Knowles Precision Devices

Recent Posts

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
1

Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

28.1.2026
16

Stackpole Releases AlN High‑Power Thick Film Chip Resistors

26.1.2026
34

ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

23.1.2026
27

Passive Components in Quantum Computing

22.1.2026
150

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

20.1.2026
175

TDK Releases High Performance 105C DC Link Film Capacitors

19.1.2026
72

YAGEO Offers Automotive MOVs for EV and AI power

19.1.2026
38

Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

15.1.2026
45

Upcoming Events

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version