Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns BTJ Thermal Jumper Chips for PCB Heat Management

    One‑Pulse Characterization of Nonlinear Power Inductors

    Wk 51 Electronics Supply Chain Digest

    Samsung Unveils World First CLLC Resonant 1kV 33nF C0G MLCC in 1210 Size

    Bourns Releases 500VDC 690VAC Fuse to Protect Power Semiconductors

    Samsung MLCC Replacing Aluminum Polymer Capacitors in AI Systems

    Reliability Improvement in BaTiO3 MLCCs Using Ni–Sn and Ni–In Alloy Electrodes

    Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

    Vishay Releases Fast Acting Thin Film Chip Fuses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns BTJ Thermal Jumper Chips for PCB Heat Management

    One‑Pulse Characterization of Nonlinear Power Inductors

    Wk 51 Electronics Supply Chain Digest

    Samsung Unveils World First CLLC Resonant 1kV 33nF C0G MLCC in 1210 Size

    Bourns Releases 500VDC 690VAC Fuse to Protect Power Semiconductors

    Samsung MLCC Replacing Aluminum Polymer Capacitors in AI Systems

    Reliability Improvement in BaTiO3 MLCCs Using Ni–Sn and Ni–In Alloy Electrodes

    Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

    Vishay Releases Fast Acting Thin Film Chip Fuses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Supercapacitors Attractive in New Tidal Power

4.11.2020
Reading Time: 3 mins read
A A
Schematic of the ocean-wave-driven electrochemical CO2RR system for liquid fuel production. The system consists of three components: the spring-assisted spherical TENG; an energy storage circuit with rectifiers and a supercapacitor; and a two-electrode electrochemical cell for CO2RR and OER. Source: Leung et al.

Schematic of the ocean-wave-driven electrochemical CO2RR system for liquid fuel production. The system consists of three components: the spring-assisted spherical TENG; an energy storage circuit with rectifiers and a supercapacitor; and a two-electrode electrochemical cell for CO2RR and OER. Source: Leung et al.

Large supercapacitors now compete head on with batteries and are quoted in kWh. Some are drop-in lead-acid and lithium-ion battery replacements. Others are bought as uninterruptible power supplies up to 1MWh offering the bonus of efficient peak-shaving, because power density is ten times that of lithium-ion batteries and series resistance low.

IDTechEx CEO Raghu Das advises,

RelatedPosts

Bourns BTJ Thermal Jumper Chips for PCB Heat Management

One‑Pulse Characterization of Nonlinear Power Inductors

Wk 51 Electronics Supply Chain Digest

“Frequently, supercapacitors are used as an energy storage device in order to smooth the output power and improve the low-voltage ride-through capability of energy conversion systems, being fit-and-forget and wasting 14% less electricity than lithium-ion batteries. Output power fluctuation caused by the swell effect (opposite of voltage dip) is efficiently smoothed by supercapacitor energy storage systems. For smoothing tidal electricity over many hours, the new 100Wh/kg supercapacitor variants from Aowei and Toomen (others following) are worth considering. One tenth of the size, weight and self-leakage of pure supercapacitors, they retain much better cycle life, calendar life, power density, deep discharge, series resistance and reliability than lithium-ion batteries, potentially conferring lower total cost of ownership.” 

A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel storing its energy in supercapacitors. The system, described in an open-access paper in the RSC journal Energy & Environmental Science, mainly consists of a spherical spring-assisted triboelectric nanogenerator (TENG) to convert the mechanical energy of the wave to electrical energy; a power management circuit with a supercapacitor to temporarily store the harvested electrical energy; and a electrochemical setup to reduce carbon dioxide to formic acid.

In 2019, M.Sousounis investigated the DC link of a hypothetical 1.5 MW three-bladed variable-pitch horizontal-axis tidal current turbine for torque pulsation mitigation. Fatigue torque and peak torque lead to premature components failure usually crudely reduced by system overdesign and costly maintenance. Pulsations created by unsteady tidal current flow were reduced by changing generator speed. Supercapacitors connected at the DC link optimally absorbed the fast short-term electricity variations, keeping DC link voltage within limits. Supercapacitors were also recommended for connection in weaker grids and in tidal current arrays. 

“Graphene” is a badge of honour on supercapacitors. On IDTechEx research, it can mean use of non-flammable, minimally-toxic electrolytes, omitting the volatile, flammable, toxic carcinogen acetonitrile, associated with birth defects and turning to cyanide in the human body. Slightly better series resistance and energy density may arise though the price may be higher. Seven of the eighty supercapacitor manufacturers now use graphene, up from zero ten years ago. Indeed, 54% of manufacturers now make supercapacitors with minimal disposal issues – another contributor to paybacks – and no flying restrictions.

Solar & Supercapacitor Powered Vehicles on the Track for Future Mobility Platform
Researchers at RCPTM Olomouc Developed Graphene Based Materials Boosting Supercapacitors Energy and Power Density to the World Record Values

Related

Source: IDTechEx

Recent Posts

Bourns BTJ Thermal Jumper Chips for PCB Heat Management

22.12.2025
18

Samsung Unveils World First CLLC Resonant 1kV 33nF C0G MLCC in 1210 Size

19.12.2025
38

Bourns Releases 500VDC 690VAC Fuse to Protect Power Semiconductors

19.12.2025
13

Samsung MLCC Replacing Aluminum Polymer Capacitors in AI Systems

19.12.2025
45

Reliability Improvement in BaTiO3 MLCCs Using Ni–Sn and Ni–In Alloy Electrodes

19.12.2025
25

Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

18.12.2025
6

Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

17.12.2025
30

Jianghai Offers Custom Bottom Cooled Screw Aluminum Capacitors

17.12.2025
42

TDK Unveils Vibration-Resistant Hybrid Polymer Aluminum Capacitors

15.12.2025
32

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version