Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Supercapacitors vs Batteries: An Analysis of Energy Storage Solutions

19.9.2024
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog elaborates of energy storage solutions – supercapacitors versus batteries.

Supercapacitors feature unique characteristics that set them apart from traditional batteries in energy storage applications. Unlike batteries, which store energy through chemical reactions, supercapacitors store energy electrostatically, enabling rapid charge/discharge cycles.

RelatedPosts

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Knowles Releases Inductors for Mission-Critical RF Applications

In certain applications, this gives them a significant advantage in terms of power density, lifespan, efficiency, operating temperature range and sustainability.  

In this blog, we’ll explore how supercapacitors compare to conventional battery technologies and examine the key factors driving interest in supercapacitors for modern energy applications. For a high-level specifications overview, see Table 1. 

High Power Density

Supercapacitors store energy electrostatically, so their power density ranges from 10 to 100 times higher than batteries. As a result, they can fully charge in a matter of seconds. Battery chemistry reactions occur at slower speeds, which impacts charge and discharge rates (typically measured in hours). 

Long Life Expectancy

Due to mechanical and chemical degradation, rechargeable batteries wear out after a few thousand charge/discharge cycles maximum. Excluding those with polymer electrodes, supercapacitors have a much longer lifespan than batteries. The lifecycle of electric double layer capacitors (EDLCs) is nearly unlimited because electrostatic energy storage causes less wear and tear on components.

Wide Operating Temperature Range

Supercapacitors can function without significant degradation in environments ranging from −40°C to 70°C. Batteries, particularly lithium-ion batteries, can’t operate across that wide of a temperature range without overheating.

Eco-Friendly

Supercapacitors mostly consist of carbon and its compounds, so they biodegrade, and waste materials are easy to dispose of. Further, packaging is designed to minimize negative environmental impacts.

High Efficiency

In renewable power generation, energy efficiency is paramount. During charging cycles, supercapacitors only experience about 1 percent energy loss, compared to up to 30 percent for lead-acid batteries. 

Parameter Lead-Acid Battery Lithium-Ion Battery Supercapacitor
Specific energy density (Wh/kg) 10-100150-2001-10
Specific power density (Wh/kg) <1000<2000<10,000
Cycle life 10005000>50,000
Charge and discharge efficiency 70-85%99%85-98%
Fast charge duration 1-5h0.5-3h0.3-30s
Fast discharge duration 0.3-3h0.3-3h0.3-30s
Shelf life (years) 5-1510-2020
Operating temperature (°C) -5 to 40-30 to 60-40 to 75
Table 1: Comparison of key specification differences between lead-acid batteries, lithium-ion batteries and supercapacitors. Abbreviated from: Source. 

Energy Density vs. Power Density in Energy Storage 

Supercapacitors are best in situations that benefit from short bursts of energy and rapid charge/discharge cycles. They excel in power density, absorbing energy in short bursts, but they have lower energy density compared to batteries (Figure 1). They can’t store as much energy for long-term use. Batteries are more suitable for applications where energy delivery occurs over longer durations. The balance between power density and energy density depends on the application requirements. 

Figure 1: Ragone plot comparing the performance of several common energy storage devices, including supercapacitors and batteries. Source.

Common Supercapacitor Applications 

While supercapacitors are used in many different application areas, they thrive under two key conditions. 

  • High-Power: With their built-in high-power characteristics, supercapacitors are critical in power electronics, where engineers are looking for short-time power peaks.
  • Long Life Cycle: In low-power applications, like security installations, batteries present maintenance issues or insufficient performance over time. Supercapacitors can efficiently handle quick bursts of energy when needed and can endure many more charge/discharge cycles over time. 

For a detailed review on leveraging supercapacitors for efficient wireless power in smart logistics, read our latest white paper. 

Related

Source: Knowles Precision Devices

Recent Posts

Choosing the Right Capacitor: The Importance of Accurate Measurements

12.11.2025
18

Skeleton Opens SuperBattery Factory in Finland 

12.11.2025
10

ESR of Capacitors, Measurements and Applications

7.11.2025
71

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
67

Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

6.11.2025
14

Capacitor Lead Times: October 2025

6.11.2025
87

Paumanok Unveils Aluminum Capacitor Foils World Markets Study 2025-2030

6.11.2025
17

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

3.11.2025
30

Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

3.11.2025
57

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version