Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Schurter Releases EKO HV Fuses up to 1000 VDC, 1100 A

    Empower Releases High-Density Embedded Silicon Capacitors

    TDK Unveils 125C Compact DC Link Film Capacitors

    SCHURTER Releases Coin Cell Supercapacitors for Backup Power

    Skeleton Technologies Expands in U.S. to Power AI Data Centers

    TDK Releases Stackable µPOL 25A Power Modules

    Wk 6 Electronics Supply Chain Digest

    Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

    DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Schurter Releases EKO HV Fuses up to 1000 VDC, 1100 A

    Empower Releases High-Density Embedded Silicon Capacitors

    TDK Unveils 125C Compact DC Link Film Capacitors

    SCHURTER Releases Coin Cell Supercapacitors for Backup Power

    Skeleton Technologies Expands in U.S. to Power AI Data Centers

    TDK Releases Stackable µPOL 25A Power Modules

    Wk 6 Electronics Supply Chain Digest

    Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

    DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Tantalum Polymer Capacitors Protect Data at SSD Applications

11.12.2020
Reading Time: 5 mins read
A A
SSD board with polymer tantalum capacitors; image source: OWC

SSD board with polymer tantalum capacitors; image source: OWC

KEMET Technical Blog Post released and application note on usage of polymer capacitors in Solid State Drives (SSDs).

SSD Solution features a bank of capacitors to hold up the power rail when system power is lost. This energy gives the drive time to flush its caches and write its information tables. KEMET SSD Solution includes several capacitors options, in this document the tantalum polymer technology and portfolio offering is presented.

RelatedPosts

Schurter Releases EKO HV Fuses up to 1000 VDC, 1100 A

Empower Releases High-Density Embedded Silicon Capacitors

TDK Unveils 125C Compact DC Link Film Capacitors

Introducing Hold-Up

Protecting data isn’t just about cyber security, it is about making sure your data gets to where it is meant to go. A lot could happen from the time you click save or upload to the time your data is sitting in its destination. One potential cause for concern is what happens if that server farm you’re sending your data to loses power. That’s where SSD holdup capacitors come in. Our polymer electrolytic capacitors make excellent devices to use in hold-up circuits. The circuit in figure 1 shows a typical decoupling implementation.

Figure 1 . SSD – schematic application circuit.

The Options for Hold-Up

Creating an effective hold-up circuit is not as easy as adding one-hundred 10 uF ceramic capacitors in parallel and calling it a day. There are many factors that go into consideration when creating an effective hold-up circuit. Things like stability, reliability, form factor, operating voltage, and energy density must all be considered. At an enterprise level, size is critical because SSDs are inherently thin and small so that many can be fit in a single system. Reliability and operational life is critical because enterprise systems usually have very extended “up” times and undergo many cycles of read/write operations. Perhaps most important is energy density. In a general sense, the greater the energy density of the storage device, the less of them are needed. Each of the four basic families of capacitors have their pros and cons due to their operating physics and properties.

Energy Density

Supercapacitors and aluminum electrolytic have perhaps the best energy density of the group, but their limitations in voltage and size don’t make them suitable options for hold-up. Ceramic capacitors can be very small but conversely, very limited in energy density, especially on a per-part level. Once again, polymer electrolytic capacitors have very

acceptable energy density for a hold-up application.

Size

While their amount of capacitance is sufficient, supercapacitors and aluminum electrolytic capacitors are usually prohibitively large. Some ceramic capacitors can be quite small but those small ones don’t have enough capacitance. Polymer electrolytic capacitors have excellent volumetric efficiency, it is possible to have the necessary capacitance in a sufficiently small capacitor.

Reliability

Reliability is something in which there is no compromise. Enterprise level SSDs require the utmost best as far as reliability goes. Such strict requirements limit the options to ceramic and polymer electrolytic as both supercapacitors and aluminum electrolytic have various wear-out mechanisms. As we have seen before ceramic capacitors are not as suitable for hold-up circuits as polymer electrolytic, so polymer wins this category.

Voltage

SSD power controllers usually contain a combined boost-buck converter to use capacitor banks in the range of 3.3 to 35 volts. That is well within the voltage rating for polymer electrolytic, ceramic, and aluminum electrolytic. Perhaps one of the biggest drawbacks to supercapacitors is their limited operating voltage. It is generally insufficient for enterprise holdup.

Polymer electrolytic capacitors, such as our T54x (https://content.kemet.com/datasheets/KEM_T2079_SSD.pdf) , have the right mixture of size, voltage, energy density, and reliability.

Table 1 Application needs, technical parameters and technology performance comparison.

Calculating Hold-Up

KEMET provides designers an on-line calculator (https://www.kemet.com/en/us/ssd-configuration-calculator.html), figure 2. This tool allows the designers to fill the height restriction, total hold up timing, the charge and drop voltage, and the total output power.

Figure 2.  SSD Configuration Calculator

The tantalum polymer with smaller footprint (<7343) provide more flexibility with orientation in the board, but the larget footprint (7343 and 7360) are the most commom used and reduce the board space. The highest energy density part numbers include the 7343-15 47uF35V (ultra limited max H 1,5mm) and the 7360-20 220uF25V and 100uF35V (limited max H 2,0mm)

 The part numbers and energies are shown in figure 3.

Figure 3 . SSD Ta Polymer – Current Offering / Maximum Energy Values

Conclusions

The maximum energy offered by the KEMET Polymer SSD portfolio are solutions to the SSD designers where space board saving, high volumetric efficiency/miniturization and reliability are required.

KEMET FAE, James Lewis explains the hold-up in this video with EEJournal

Related

Source: Kemet Blog

Recent Posts

Empower Releases High-Density Embedded Silicon Capacitors

11.2.2026
4

TDK Unveils 125C Compact DC Link Film Capacitors

11.2.2026
1

SCHURTER Releases Coin Cell Supercapacitors for Backup Power

10.2.2026
6

Skeleton Technologies Expands in U.S. to Power AI Data Centers

9.2.2026
12

Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

6.2.2026
19

Würth Elektronik Announces Partner Program

6.2.2026
19

Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

5.2.2026
72

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
101

Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

3.2.2026
25

Upcoming Events

Feb 11
16:00 - 17:00 CET

What’s Next in Power Electronics Design

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version