• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

TDK Introduced High Performance SMD Chip Inductors for Smartphones

8.6.2022

Bourns Releases Semi-shielded Power Inductors

28.6.2022

KYOCERA AVX Launches New Interactive Component Search Tool

27.6.2022

YAGEO Presents Reverse Geometry MLCC with Reduced ESL

27.6.2022

Effects of Harsh Environmental Conditions on Film Capacitors

24.6.2022
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Bourns Releases Semi-shielded Power Inductors

    KYOCERA AVX Launches New Interactive Component Search Tool

    YAGEO Presents Reverse Geometry MLCC with Reduced ESL

    Effects of Harsh Environmental Conditions on Film Capacitors

    Waveguides and Transmission Lines Explained

    Electron microscope images show the precise atom-by-atom structure of a barium titanate (BaTiO3) thin film sandwiched between layers of strontium ruthenate (SrRuO3) metal to make a tiny capacitor. (Credit: Lane Martin/Berkeley Lab)

    Researchers Developed BaTiO3 Ultrathin Ceramic Capacitors for Microchips

    Common-mode Choke Parameters Explained; WE Webinar

    Bourns Releases Power Line Communication (PLC) Transformers

    Murata to Begin Closed-loop Recycling of PET Film Used at MLCC Production

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Ceramic Capacitors Loss Modelling under High DC Bias Voltage and High Current Stress

    MLCC Case Size Impact to Parameters

    NTC Thermistor in Fire Alarm Application LTSpice Simulation

    MLCC Ageing; Samsung Video

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Bourns Releases Semi-shielded Power Inductors

    KYOCERA AVX Launches New Interactive Component Search Tool

    YAGEO Presents Reverse Geometry MLCC with Reduced ESL

    Effects of Harsh Environmental Conditions on Film Capacitors

    Waveguides and Transmission Lines Explained

    Electron microscope images show the precise atom-by-atom structure of a barium titanate (BaTiO3) thin film sandwiched between layers of strontium ruthenate (SrRuO3) metal to make a tiny capacitor. (Credit: Lane Martin/Berkeley Lab)

    Researchers Developed BaTiO3 Ultrathin Ceramic Capacitors for Microchips

    Common-mode Choke Parameters Explained; WE Webinar

    Bourns Releases Power Line Communication (PLC) Transformers

    Murata to Begin Closed-loop Recycling of PET Film Used at MLCC Production

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Ceramic Capacitors Loss Modelling under High DC Bias Voltage and High Current Stress

    MLCC Case Size Impact to Parameters

    NTC Thermistor in Fire Alarm Application LTSpice Simulation

    MLCC Ageing; Samsung Video

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK Introduced High Performance SMD Chip Inductors for Smartphones

8.6.2022
Reading Time: 3 mins read
0 0
0
SHARES
25
VIEWS

TDK offers compact SMD chip inductors with enhanced performance capabilities to address smartphone power circuit demands.

TDK Corporation has developed the new TFM201208BLE series of SMD chip inductors optimized for space-constrained smartphone power circuits. These are available in 0.24, 0.33 and 0.47 µH versions. Mass production will begin in June 2022.

RelatedPosts

TDK’s Thin Pattern Coils Enable High Density @ Low Profile Mobile Wireless Charging

TDK Releases Compact SMT Low-Voltage Common Mode Chokes

Markt & Technik Names Managers of the 2022 Year for Passive Components

Each supplied in a 2.0 (L) x 1.2 (W) x 0.8mm (H) form factor, the inductors in this latest TDK series feature significantly better electrical properties than the previous TFM201208BLD products – in terms of their inductor current specification and resistance levels. A 10% higher rated current of 5.5 A (Isat), plus a 22% lower DC resistance of 25 mΩ than conventional products have been attained.* These parameters are the best in the industry for inductors of this size.** The major boost in performance has been achieved through TDK’s innovative metallic magnetic material technology and structural design.

SoCs with elevated arithmetic throughput will be required as smartphone performance further progresses, and the accompanying passive components must exhibit higher current characteristics. In addition, integration of ever more functionality into smartphone designs is increasing the number of power circuits involved. Consequently, the inductors employed must have low resistance and contribute minimal losses to extend battery life. The TFM201208BLE series offer the much-needed value to smartphone OEMs delivering the necessary high current and low resistance.

TDK’s overall TFM series also has a wide variety of inductors for automotive applications, including products with 40 V voltage ratings for use in EV powertrains. TDK is constantly expanding its array of products, enabling a wider range of power circuit needs.

Features

  • Compared to conventional products (0.33 uH), the rated current has been increased 10 % to 5.5 A, and DC resistance has been reduced by 22 % to 25 mΩ.
  • The operating temperature range is from -40 ℃ to +125 ℃.
  • A compact and low-profile size of 2.0 (L) x 1.2 (W) x 0.8 (H) mm to facilitate space saving

Applications

  • Smartphone
  • Tablet
TDK TFM SMD chip inductors for smartphone applications

Glossary

  • Isat: Current value based on inductance variation (30 % lower than the initial L value)
  • SoC: System on a Chip

*Source: Comparison based on 0.33 uH inductor models, **Source: TDK, as of June 2022

Source: TDK

Related Posts

Inductors

Bourns Releases Semi-shielded Power Inductors

28.6.2022
4
Capacitors

KYOCERA AVX Launches New Interactive Component Search Tool

27.6.2022
24
Applications e-Blog

Common-mode Choke Parameters Explained; WE Webinar

22.6.2022
64

Popular Posts

  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Introduction to Capacitor Based Power Factor Correction Circuits

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2022
2021
2020
2019
2018
2017

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.