Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Introducing NEW Modelithics Library for MATLAB

    Bourns Unveils New Robust Wide-Terminal Thick Film Resistors

    Coilcraft Introduces LLC Half-Bridge Transformers for High-Frequency Applications

    Littelfuse Launches Industry-First 1000V Automotive Fuses

    TDK Releases Industry-Leading 22nF 1000V C0G MLCCs in the 3225 Case

    Modelithics Releases COMPLETE Library v25.6 for Keysight ADS with 14 New Scalable Models

    Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

    Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

    Samtec Agreed with Molex Second-Source License on High-Speed Interconnects for Data Centers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Introducing NEW Modelithics Library for MATLAB

    Bourns Unveils New Robust Wide-Terminal Thick Film Resistors

    Coilcraft Introduces LLC Half-Bridge Transformers for High-Frequency Applications

    Littelfuse Launches Industry-First 1000V Automotive Fuses

    TDK Releases Industry-Leading 22nF 1000V C0G MLCCs in the 3225 Case

    Modelithics Releases COMPLETE Library v25.6 for Keysight ADS with 14 New Scalable Models

    Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

    Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

    Samtec Agreed with Molex Second-Source License on High-Speed Interconnects for Data Centers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Understanding Inductor Dot Markings and Their Application in LTspice

21.7.2025
Reading Time: 3 mins read
A A

In this video prof. Sam Ben-Yaakov explains inductor dot markings and how to apply it in LTspice modeling.

Introduction

RelatedPosts

Ripple Steering in Coupled Inductors: SEPIC Case

Coupled Inductors in SEPIC versus Flyback Converters

Non-Linear MLCC Class II Capacitor Measurements Challenges

Inductor dot markings play a pivotal role in circuit design, especially when dealing with coupled inductors and transformers. This article and video delves into the significance of these markings, their interpretation in LTspice simulations, and the practical implications for physical inductors.

1. The Dot Convention in Inductors

The dot convention is instrumental in defining the polarity of coupled inductors. Consider two windings on a single core:

Polarity Determination: When a positive voltage is applied to the terminal marked with a dot, the corresponding dot on the coupled inductor also experiences a positive voltage. This ensures consistency in understanding the direction of voltage polarity, crucial in applications like flyback converters.

Dot Placement: The physical location of the dot on the schematic is irrelevant, provided consistency is maintained. The primary objective is to signify the same polarity at both dots.

Current Direction: In transformers, if current enters the dot of the primary winding, it exits the dot of the secondary winding, adhering to energy conservation principles. However, in coupled inductors that store energy, current can either enter or exit the dot on the secondary winding due to energy storage in the magnetic element.

2. LTspice Simulation and Dot Implications

LTspice offers features to visualize current direction and polarity influenced by dot markings:

Current Visualization: Hovering over inductors in LTspice reveals arrows indicating current direction. The simulation displays positive or negative current based on the actual flow relative to the indicated direction.

Phase Dot Feature: Right-clicking on an inductor allows the user to enable Show Phase Dot, adding dots that help identify current direction and polarity consistency.

Impact on Current Polarity: When comparing circuits with rotated inductors, the phase dot assists in understanding why currents may appear positive in one inductor and negative in another.

3. Dot Markings on Physical Inductors

Physical inductors, whether surface-mount devices (SMDs) or through-hole components, often feature dot markings:

Meaning of the Dot: The dot indicates the start of the winding, typically from the bottom layer, progressing upwards. This is evident in multi-layer windings, where the dot signifies the inner connection point.

Manufacturer Variations: Different manufacturers may describe this marking differentlyor example, Murata refers to it as polarity marking, while Coilcraft identifies it as the winding direction.

4. Practical Significance of Dot Orientation

In circuits like synchronous buck converters:

Noise Mitigation: Connecting the dotted terminal to the noisy part of the circuit and the undotted terminal to the quieter side minimizes electromagnetic interference. This setup effectively acts as a shield, reducing the potential for noise emission and coupling with other circuit components.

Conclusion

Understanding and correctly applying inductor dot markings is vital for both simulation accuracy in LTspice and practical circuit performance. These markings aid in determining voltage polarity, current direction, and optimizing circuit layout for electromagnetic compatibility. Proper knowledge ensures efficient design and troubleshooting in complex electronic systems.

Related

Source: Sam Ben-Yaakov

Recent Posts

Coilcraft Introduces LLC Half-Bridge Transformers for High-Frequency Applications

19.9.2025
4

Modelithics Releases COMPLETE Library v25.6 for Keysight ADS with 14 New Scalable Models

18.9.2025
5

August 2025 ECIA US Components Sales Sentiment Remains Strong

18.9.2025
20

Researchers Enhanced 2D Ferromagnets Performance

16.9.2025
6

Bourns Releases Two High Current Common Mode Choke Models

16.9.2025
15

Electronics Weekly Announcing Finalists for Elektra Awards 2025

16.9.2025
11

Exxelia Exhibit at Electronica India September 17–19, 2025

15.9.2025
29

Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

15.9.2025
14

5th PCNS Awards Outstanding Passive Component Papers

17.9.2025
77
source: Samtec

Best Practices for Cable Management in High-Speed and High-Density Systems

4.9.2025
22

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version