Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    SCHURTER Introduces 2410 SMD Fuse for Robust AC/DC Protection

    TDK Releases High Temp 175C Automotive NTC thermistors

    TU Wien Sets New Benchmark in Superconducting Vacuum Gap nanoCapacitors

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Vishay Releases Sulfur‑Resistant Chip Resistors

    Würth Elektronik Introduces Lead-Free SMT Spacers

    Schurter Releases EKO HV Fuses up to 1000 VDC, 1100 A

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    SCHURTER Introduces 2410 SMD Fuse for Robust AC/DC Protection

    TDK Releases High Temp 175C Automotive NTC thermistors

    TU Wien Sets New Benchmark in Superconducting Vacuum Gap nanoCapacitors

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Vishay Releases Sulfur‑Resistant Chip Resistors

    Würth Elektronik Introduces Lead-Free SMT Spacers

    Schurter Releases EKO HV Fuses up to 1000 VDC, 1100 A

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Use LT SPICE to analyze input filters

29.8.2022
Reading Time: 4 mins read
A A

by Kenneth Wyatt. EMC engineers are often called on to design low-pass filters for client projects, which is usually required to meet radiated susceptibility tests. While the most common radiated-immunity standard (IEC/EN 61000-4-3) requires testing from 80 MHz to 1000 MHz, this case study required immunity from a nearby 50 W, 500 kHz source.

In this case, the prototype product included a simple “PI” filter, comprising a parallel 330 pF capacitor, a series ferrite bead, and a parallel 100 pF capacitor. The load was 4.02 kΩ.

RelatedPosts

MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

SCHURTER Introduces 2410 SMD Fuse for Robust AC/DC Protection

Figure 1. Basic filter topologies chart. (Source: Würth Electronik)

I thought this would be a good time to use Linear Technology’s free LT SPICE software to perform some quick simulations. LT SPICE is a PC-based analysis software with a convenient schematic entry front-end. It’s also very easy to add voltage and current “probes” throughput your circuit to monitor the performance.

But first, which of the several filter topologies would be most appropriate? Würth Electronik has a very nice filter design section in its book, Trilogy of Magnetics. It turns out the right filter topology depends on the input and out impedances of the system. I’ve reproduced a handy chart (Figure 1) from page 184 of the book that you should copy and tuck into your lab notebook.

For the series filter impedance (the ferrite bead, in this case) to work, it must “see” a low impedance at each end. For example, placing a 200 Ω ferrite bead into a system with 1000 Ω and 4 kΩ input-and-output impedances wouldn’t offer sufficient series impedance to affect interfering signals. On the other hand, that same 200 Ω ferrite would work fine if the input and output impedances were near 1 Ω. That’s the purpose of the parallel capacitors.

In this case, the input impedance to the filter could vary, depending on the sensor impedance, and we knew the output impedance was 4.02 kΩ. The designer had already used a PI filter topology, which should perform well for any impedance from low to high, per the chart.

Figure 2. The input filter to be analyzed.

Here’s the original input filter circuit (Figure 2). For the purposes of this simulation, I ignored the Transzorb® D13. The input is on the left and output on the right.

By inspection, I could tell the current values of capacitors were way too small to provide a low impedance to ground for a frequency of 500 kHz, so the first thing I tried was to increase them to 0.47 µF, each. But first, let’s simulate the current circuit to see where the impedance starts to roll off.

Here’s the LT SPICE simulation (Figure 3). I used an input impedance of 50 Ω, but with the proper valued capacitor, it really doesn’t matter much. Note that the 3 dB rolloff (solid line) occurs about 16 MHz; way too high to help at 500 kHz.

Here’s the final LT SPICE simulation with 0.47 µF capacitors and the ferrite replaced with a 0.47 mH inductor (Figure 4). Note the improved filter starts rolling off at 20 kHz — well below the critical 500 kHz interfering signal and provides about 90 dB of attenuation at 500 kHz. The client was able to use the same real estate on the PC board to mount the new components. While there were other circuit changes and better shielding required, due to the proximity of the source, the filter reduced the high level of interference.

Figure 3. Initial SPICE analysis of the current filter circuit.
Figure 4. Final SPICE analysis of the improved filter circuit.

Related

Source: EDN

Recent Posts

2026 Power Magnetics Design Trends: Flyback, DAB and Planar

13.2.2026
26

Vishay Releases Compact 0806 Low‑DCR Power Inductor

5.2.2026
33

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
119

Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

3.2.2026
33

Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

3.2.2026
46

Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

2.2.2026
38

Calculating Resistance Value of a Flyback RC Snubber 

2.2.2026
57

Bourns Releases High‑Q Air Coil Inductors for RF Aplications

29.1.2026
48

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

28.1.2026
53

Upcoming Events

Feb 24
16:00 - 17:00 CET

Mastering Galvanic Isolation: Ensuring Safety in Power Electronics

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • 3-Phase EMI Filter Design, Simulation, Calculation and Test

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version