Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

What is a Conical Inductor?

5.9.2018
Reading Time: 3 mins read
A A

Source: Coilcraft article

Chris Hare, Coilcraft describes broadband conical inductors and its function.

RelatedPosts

TDK Extends SMT Gate Drive Transformers to 1000 V

Non-Linear MLCC Class II Capacitor Measurements Challenges

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

What are broadband conical inductors and how do they function?
Off-the-shelf “flying lead” and surface mount broadband conical inductors, Figure 1 and Figure 2, are a special type of broadband RF choke that are used to filter radio frequency (RF) and microwave frequency interference from electronic circuits. At high frequency, the RF choke becomes a high impedance element used to isolate noise or DC from desired signals.

Broadband conical unductor

Figure 1 “Flying lead” conical inductor

Broadband conical unductor 

 

 

 

Figure 2 Surface mount broadband conical inductor

How does a conical inductor function?
An inductor placed in series (in line) with a wire or circuit board trace will impede changes in current, such as AC noise current, by temporarily storing energy in a magnetic field and then releasing it back into the circuit. As current through the inductor changes over time (di/dt) the energy stored in the magnetic field of the inductor creates a voltage (V = L × di/dt) that opposes (impedes) a further change in the current. Regardless of whether the current through the inductor is increasing or decreasing, the magnetic field slows the current’s rate of change. Similar to mechanical energy being damped by a shock absorber, the electrical energy of a noise current “spike” in an RF choke is dispersed over time to reduce its impact. Conical inductors provide high impedance over a very wide range of frequencies.

Výsledek obrázku pro conical inductor coilcraft

Figure 3 Conical inductor function

Why does the inductor have a conical shape?
The conical shape limits the effects of stray capacitance and effectively creates a series of narrow band inductors, resulting in high impedance over a very wide bandwidth. A single conical inductor can replace a series of many narrow band inductors.

What applications are appropriate for conical inductors?

  • Blocking “noise” in RF circuits

The Federal Communications Commission (FCC) has created standards and certifies electronic devices sold or manufactured in the United States meet the electromagnetic interference (EMI) requirements. Worldwide electromagnetic compatibility (EMC) standards organizations include CISPR, IEC, ISO, and EN. FCC regulations are mandatory and apply to devices such as computer, switched-mode power supplies, television receivers, transmitters, and industrial, scientific, and medical (ISM) devices that emit RF radiation. RF chokes, such as conical inductors, are employed in electrical circuits to reduce EMI by attenuating high-frequency noise in order to meet EMC emission and immunity requirements.

The Federal Communications Commission (FCC) has created standards for, and certifies that, electronic devices sold or manufactured in the United States meet the electromagnetic interference (EMI) requirements. Worldwide electromagnetic compatibility (EMC) standards organizations include CISPR, IEC, ISO, and EN. FCC regulations are mandatory and apply to devices such as computer, switched-mode power supplies, television receivers, transmitters, and industrial, scientific, and medical (ISM) devices that emit RF radiation. RF chokes, such as conical inductors, are employed in electrical circuits to reduce EMI by attenuating high-frequency noise in order to meet EMC emission and immunity requirements.

Isolating RF signals from a DC bias / broadband filtering

A broadband (wideband) conical bias choke placed in line with the DC bias of an amplifier blocks a wide range of high frequencies from reaching the DC source. In this way, the bias choke injects the DC bias while isolating the AC signal from distortion by any stray AC noise. The critical determination when choosing an RF choke for a bias tee is the frequency range that needs to be blocked. Other key parameters are DC resistance, current requirements, size and cost.

article and figures credit: Coilcraft

Related

Recent Posts

TDK Extends SMT Gate Drive Transformers to 1000 V

20.8.2025
4

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
10

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
7

Common Mistakes in Flyback Transformer Specs

15.8.2025
18

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
9

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
93

Bourns Releases High Power High Ripple Chokes

8.8.2025
32

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
69

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

6.8.2025
40

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
54

Upcoming Events

Aug 20
16:00 - 16:30 CEST

Pulse transformer design for RLC loads

Aug 27
17:00 - 18:00 CEST

Capacitor Assemblies for High-Power Circuit Designs

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version