Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 22 Electronics Supply Chain Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 22 Electronics Supply Chain Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

ADL New Plug & Play Solution for Supercapacitor Balancing

1.4.2020
Reading Time: 114 mins read
A A

Source: ALD Analogue Linear Devices article

By Paul Pickering, ALD

RelatedPosts

Wk 22 Electronics Supply Chain Digest

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

Supercapacitors are unique because they can work in conjunction with or as an alternative to batteries in applications needing many rapid charge/discharge cycles and are popular in applications such as short-term energy storage, regenerative braking, and static RAM memory backup. But balancing a supercapacitor in a design involves more than connecting a few wires. When a supercapacitor has an operating voltage of 2.5V – 2.7V, most applications use an array of devices connected in series for higher voltage.

Many supercapacitors have a leakage current which varies based on numerous factors, including:

  • Initial leakage value
  • Leakage variation with charging voltage, charging current and temperature
  • Operating temperature range
  • Chemistry, Material, and Construction
  • Aging

In a cell, differences in leakage currents between individual supercapacitors result in changes in voltages across them over time; this can cause reduced lifespan and eventual failure since exceeding the maximum voltage on a supercapacitor can lead to cell failure.

Preventing this imbalance requires a balancing circuit that keeps the voltage across each supercapacitor within limits by automatically correcting the effects of changing leakage currents, all with minimal added leakage current or power consumption.

For the module designer, this represents an additional layer of complexity. A simple resistor-based design dissipates power and doesn’t respond to aging and temperature variations; an opamp-based design has higher performance, but is complicated, also wastes power and consumes excessive board space. Developing a solution also requires layout expertise and analog or power design skills; the result may be added development time or even make the problem worse and add unwanted leakage of its own.

Overview of a new Printed Circuit Board

A new printed circuit board (PCB) offers a “plug and play solution” by combining all of the circuitry required to accomplish these tasks for any size supercaps. Figure 1 shows the board, which is designed to be used in conjunction with precision MOSFET arrays.

Each board measures only 0.6” x 1.6” and when fully populated can balance up to four supercapacitors connected in series; in addition to the unpopulated, populated boards

are available with different combinations of MOSFETS to reach required voltages. For larger arrays, any number of boards can be connected in series, subject only to a maximum voltage per board of 15V.

page2image2507969088

Figure 1 left: four supercapacitors plus external components courtesy of Advanced Linear Devices (ALD).

The board can accommodate supercapacitors from 0.1F to 3000F and beyond. The average additional power dissipation due to the use of the boards is zero, which makes this method of supercapacitor balancing very energy-efficient. It is especially suited for low loss energy harvesting and long life battery-operated applications.

Figure 2 shows the schematic of the board used with four supercapacitors C1 – C4. The MOSFET is an array of four identical chips; that contains two devices in an identical configuration. Depending on the board selected, each supercapacitor can have a single MOSFET, or two devices in parallel, connected across it. Connecting two devices in parallel gives an equivalent MOSFET with twice the output current and twice the sensitivity to voltage change.

The “XX” in both part numbers denotes the voltage across the MOSFET that corresponds to a leakage current of 1uA at 25°C, as discussed in the next section.

Each MOSFET is rated for a reverse bias diode current of up to 80 mA maximum. Any reverse bias condition as a result of changing supercapacitor voltages, especially during fast supercapacitor discharge, could lead to some internal nodes becoming reverse biased with surge current in excess of this limit.

The board has TO277 pads for adding external Schottky rectifiers (power diodes) to clamp such current transients.

An optional resistor can also be connected across each pair of supercapacitors. Normally this is left open, but if those two supercapacitor locations are unpopulated a zero-ohm jumper in the corresponding location should be installed.

page3image2588522672

Figure 2: schematic of a fully-populated board with three MOSFET arrays. The design ensures that the voltage across each supercap (VA – VB, for example) does not exceed the maximum allowed value. Courtesy of Advanced Linear Devices

Circuit Operation

How does the circuit automatically balance leakage? A MOSFET can be considered as a three-terminal voltage-controlled resistor over a limited operating range, with the “on” resistance RDS(ON) an exponential function of the input voltage VGS. When the gate and drain are connected, VDS is also equal to VGS, and called the threshold voltage Vt. Figure 3 shows the data for the quad MOSFET array.

page5image2506177504

Figure 3: The chip relative ON resistance vs. input voltage courtesy of ALD .

The “XX” in the ALD part numbers denotes the threshold voltage Vt that gives an output current IOUT of 1μA at 25°C. For example, the ALD810025 quad array has Vt = 2.5V, so IOUT = 1μA at 2.5V and 25°C. This corresponds to an RDS(ON) of 2.5MΩ. Table 1 shows the change in IOUT as Vt varies.

Output Current

Table 1: Equivalent ON resistance at different input voltages and output currents for the ALD810025 at TA = 25°C.

When a MOSFET is connected across a supercapacitor in an array, the exponential relationship between Vt and RDS(ON) means that any small increase in the supercapacitor voltage caused by leakage current from another supercapacitor will cause a large decrease in the RDS(ON) of that MOSFET. This will increase IDS(ON) and reduce the voltage. As the voltage decreases, IDS(ON) will also decrease.

Depending on the PCB part number selected, each supercapacitor can have a single MOSFET or two devices in parallel connected across it. Connecting two devices in parallel gives an equivalent MOSFET with twice the output current and twice the sensitivity to voltage change.

The leakage current balancing mechanism is fully automatic and works for supercapacitor arrays with different leakage current profiles. In a stack with many supercapacitors in series, multiple MOSFET arrays function to balance the various leakage currents.

For example, if leakage current IC1 is greater than IC2 in the four-capacitor array in figure 2, then both M1s (in U1 and U2) are turned off and the M2 pair becomes the active circuit element to balance C1, the supercapacitor with the greatest leakage.

Without the auto-balancing circuit, the voltage across C2 can keep rising until it destroys the part. The MOSFET balancing solution contributes virtually no additional current drain and adjusts for temperature, time, and other environmental changes that may contribute to out-of-balance conditions.

When an MOSFET is connected across a supercapacitor in an array, any increase in the supercapacitor voltage caused by leakage current from another supercap will cause a decrease in the RDS(ON) of that MOSFET. This will increase IDS(ON) and reduce the voltage. As the voltage decreases, IDS(ON) will also decrease. The leakage current balancing is fully automatic and works for a variety of supercapacitors, each with a different leakage current characteristic profile.

The MOSFET balancing solution contributes virtually no additional current drain and adjusts for temperature, time, and other environmental changes that may contribute to out-of-balance conditions. In a stack with many supercapacitors in series, multiple SAB MOSFET arrays function to balance the various leakage currents. For example, if leakage current IC1 is greater than IC2 in the four-capacitor array in figure 2, then both M1s (in U1 and U2) are turned off and the M2 pair becomes the active circuit element to balance C1, the supercapacitor with the greatest leakage.

Without the auto-balancing circuit, the voltage across C2 (VB – VC) can keep rising until it destroys C2 with overvoltage.

By providing a plug-and-play solution to the problem of balancing leakage currents in supercapacitors, the new PCB saves both time and effort for designers who must integrate them into their modules.

Related

Recent Posts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

30.5.2025
20

Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

29.5.2025
35

VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

28.5.2025
61

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

26.5.2025
31

Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

21.5.2025
61

Coupled Inductors Circuit Model and Examples of its Applications

21.5.2025
88

Würth Elektronik Introduces LTspice Models for ESD Products

21.5.2025
49

Littelfuse Gate Driver Integrates Diode and Current Limit Resistor in Compact IC

21.5.2025
21

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
74

Inductor Resonances and its Impact to EMI

16.5.2025
77

Upcoming Events

Jun 4
11:00 - 12:00 CEST

Würth Elektronik PCB Production in Asia

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version