Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Offers Zephyr Operating System Workshop and Training Videos

    Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

    What Track Width To Use When Routing PCB

    YAGEO Unveils PulseChip LAN Transformer

    Bourns Releases Automotive Impedance Matching Transformer

    Stackpole Offers Affordable Current Sense Chip Resistors

    Knowles Extends Range and Performance of C0G MLCC Capacitors

    May 2025 ECST Component Results Show Moderating Decline in Sales Sentiment

    Panasonic Releases New Aluminum Hybrid Capacitors with High Ripple Current in Compact Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Offers Zephyr Operating System Workshop and Training Videos

    Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

    What Track Width To Use When Routing PCB

    YAGEO Unveils PulseChip LAN Transformer

    Bourns Releases Automotive Impedance Matching Transformer

    Stackpole Offers Affordable Current Sense Chip Resistors

    Knowles Extends Range and Performance of C0G MLCC Capacitors

    May 2025 ECST Component Results Show Moderating Decline in Sales Sentiment

    Panasonic Releases New Aluminum Hybrid Capacitors with High Ripple Current in Compact Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

CAP-XX Develops Industry’s First 3 Volt Thin Prismatic Supercapacitors

12.4.2018
Reading Time: 2 mins read
A A

Source: PRWeb news

April 11, 2018, Provides peak power support to 3V coin cell batteries and eliminates need for 2.7V LDO regulator for less expensive, smaller, more energy-efficient designs with extended battery life.

RelatedPosts

DigiKey Offers Zephyr Operating System Workshop and Training Videos

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

What Track Width To Use When Routing PCB

CAP-XX (LSE:CPX), a leader in supercapacitors that deliver peak power to support or replace batteries, today announced it has developed the industry’s first 3V thin, prismatic supercapacitors.

The company will deploy its 3V technology first in thin prismatic form to meet demand for small, inexpensive, energy-efficient power solutions for thin wearables, key FOBs and other IoT devices. CAP-XX will then integrate the 3V technology into its larger prismatic supercapacitors, automotive modules and other products for high-energy, high-power applications.

The new 3V supercapacitors eliminate the cost and inefficiencies of the low-dropout (LDO) voltage regulator or buck converter often required to step the voltage down to work with the industry’s existing 2.7V-rated thin, prismatic supercapacitors. CAP-XX is initially targeting markets using 3V coin cell batteries, where popular batteries such as the CR2032 have reasonable energy (~220mAh) but have trouble delivering the peak power (~100mA) needed for data collection and transmission. CAP-XX can handle those power bursts, and its new 3V supercapacitors can be placed directly across the battery without the intermediary LDO.

3V supercapacitors enter production trials; samples expected August 2018 with Q2 2019 production:
To achieve the 3V, CAP-XX developed new materials and production techniques. The company has successfully tested prototypes at 3V, 70°C meeting the IEC 62391 requirement for endurance. CAP-XX has started production trials, with samples expected for customers by end of August 2018, and mass production in the first half of 2019. Pricing will start at less than US$1 in large volumes. CAP-XX will become the only manufacturer to provide a 3V supercapacitor in a thin, prismatic form factor.

The 3V versions, ranging from 0.9mm to 1.9mm thick, will come in the same footprints as CAP-XX’s existing 2.7V thin prismatic supercapacitors: Z, 20mm x 15mm; A, 20mm x 18mm; W, 17.5mm x 28.5mm; S, 17.5mm x 39.5mm. Initial samples will be in the S package, with other footprints and the 0.6mm Thinline products to follow.

Specific benefits of the 3V supercapacitors over 2.7V cells that require an LDO:

  • Cost savings of US$0.27 to $0.31, or 20 to 25%, based on a single supercapacitor price of US$0.95 to $1
  • Saved battery energy, up to 30% over five years. Assuming constant power, an LDO dropping the battery voltage from 3V to 2.7V will lose 10% of the battery energy. On top of that, assuming the LDO draws 1µA, an additional 8.8mAh (4% of a typical CR2032’s energy) is lost per year. The projected yearly energy savings therefore is: 10% + 4% = 14% after one year, 10% + 8% = 18% over two, 22% over three and 30% over five years.
  • Increased usable energy storage. For example, if an application operates down to 1.8V, then a 3V supercapacitor stores 42% more usable energy than a 2.7V one.
  • Improved power density, by 23%.
  • Low leakage current, approximately 1.5µA for a 500mF cell at 3V. As the battery discharges and voltage reduces, the supercapacitor leakage current also reduces to about 0.7µA at 2.5V.

Engineers might also consider a buck converter or a buck-boost design if the current required is only marginally more, say +20%-30%, than the coin cell can provide. CAP-XX projects that its 3V supercapacitor solution will be up to 50% cheaper than such a design. CAP-XX also projects such a design will still incur significant energy losses, it won’t see the benefits of the higher currents from a 3V supercapacitor, and it will require more components.

 

Related

Recent Posts

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
11

Bourns Releases Automotive Impedance Matching Transformer

6.6.2025
2

Stackpole Offers Affordable Current Sense Chip Resistors

6.6.2025
2

Knowles Extends Range and Performance of C0G MLCC Capacitors

6.6.2025
5

Panasonic Releases New Aluminum Hybrid Capacitors with High Ripple Current in Compact Size

6.6.2025
2

5th PCNS Conference Registration Now Open!

5.6.2025
12

YAGEO Introduces Automotive Supercapacitors for Stable BMS in EVs

5.6.2025
17

Capacitance Definition of Non-Linear Voltage Dependent Capacitors

5.6.2025
12

Bourns Releases Noise Suppression Common Mode SMD Inductors

4.6.2025
13

Passive Electronic Components Lead-times Update

4.6.2025
42

Upcoming Events

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version