Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Launches 2025 DigiWish Holiday Giveaway for Global Engineering Community

    Samtec Releases Rugged Multi-Port SMPM Interconnects with Threaded Coupling

    Stackpole Expands Anti-Corrosive Anti-Sulfur Thin Film Chip Resistors

    Skeleton Opens €220M Supercapacitor Leipzig Factory

    TAIYO YUDEN Extends Polymer Hybrid Aluminum Capacitors with Higher Ripple Current and Lower Profile

    Würth Elektronik Extends its Safety Film Capacitors

    Researchers Present Novel Graphene-Based Material for Supercapacitors

    TDK Releases 35A 750J Current Limiters for High-Power Applications

    Murata Releases World First 15nF 1.25kV C0G MLCC in 1210 Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Launches 2025 DigiWish Holiday Giveaway for Global Engineering Community

    Samtec Releases Rugged Multi-Port SMPM Interconnects with Threaded Coupling

    Stackpole Expands Anti-Corrosive Anti-Sulfur Thin Film Chip Resistors

    Skeleton Opens €220M Supercapacitor Leipzig Factory

    TAIYO YUDEN Extends Polymer Hybrid Aluminum Capacitors with Higher Ripple Current and Lower Profile

    Würth Elektronik Extends its Safety Film Capacitors

    Researchers Present Novel Graphene-Based Material for Supercapacitors

    TDK Releases 35A 750J Current Limiters for High-Power Applications

    Murata Releases World First 15nF 1.25kV C0G MLCC in 1210 Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Design Challenges with Bidirectional EV Charging

10.5.2023
Reading Time: 3 mins read
A A

Knowles Precision Devices released white paper on why bidirectional EV charging requires special attention to design.

As interest and adoption increase in the electric vehicle (EV) arena, associated technologies are advancing quickly.

RelatedPosts

Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Batteries are becoming more powerful and charging infrastructure is increasingly robust and efficient. With all these advancements, EV batteries are good for more than powering cars on the road.

Bidirectional charging capabilities are the next big perk for EV owners. Perfecting this technology means EV batteries can fuel vehicles and private homes or local grids. Right now, OEMs are part of a huge push to make bidirectional chargers resilient and reliable.

How Does Bidirectional Charging Work?

When an EV is charging, alternating current (AC) from the grid is converted into direct current (DC) electricity, which can be used by the vehicle. This conversion can be performed by the vehicle’s converter, or a converter located inside the charging apparatus.

During this process, semiconductors located inside the converter switch at high speeds to create a waveform that mimics DC electricity. In a unidirectional charging scenario, diodes continue sending current forward in one direction—towards the vehicle.

Bidirectional converters (right) are the same as unidirectional converters (left), but the second phase uses active switches to achieve bidirectionality. Credit: Yole

Replacing diodes with semiconductors, see Figure 1, allows waveforms to be made on the primary and secondary sides of the converter, so current can flow in either direction—towards the vehicle or towards the grid. Since semiconductor switching creates so much electrical noise, and there are so many more of them in bidirectional chargers, smoothing and filtering ceramic capacitors, like snubber capacitors, are implemented to smooth and reduce all of that noise. 

Why Use Bidirectional Charging in the First Place?

Even with all the excitement, battery economics is a central concern with more devices and systems on the grid. What happens when the grid gets overloaded? Experts believe that vehicle-to-grid charging is one way to manage demand-response capabilities.

Bidirectional chargers regulate the flow of electricity in both directions, which allows EV batteries to charge from the grid and discharge electricity back into the grid to power a home, office, or appliance during an outage. In other words, vehicles can pick up the slack when grids inevitably fail due to factors like weather or overload.

What are the Greatest Design Challenges Associated with Bidirectional EV Charging?

To serve their critical function, bidirectional chargers need to comply with local grid requirements, which vary across localities. Designers are tasked with ensuring communication devices and circuits can accommodate different voltages (e.g., 230V vs. 110V) and frequencies (e.g., 50Hz vs. 60Hz) depending on where the driver lives and travels to ensure safe, reliable charging and discharging.

Since bidirectional chargers send current in two different directions using one circuit, their components will experience more wear. Wear leads to overheating, voltage spikes, and current surges that could pose safety concerns. Each component in the system must be designed for longer device life and a higher number of charge/discharge cycles. Along the same lines, efficiency becomes a more critical constraint because these chargers experience a higher number of power conversion cycles than unidirectional chargers.

Adding active switches to the secondary side of the converter for bidirectional charging adds complexity to the overall design. Components must be carefully selected to handle high power without compromising safety or reliability.

For more information on bidirectional EV charging, see Knowles white paper, Making Electric Vehicle Wireless Charging a Reality. 

Related

Source: Knowles

Recent Posts

Stackpole Expands Anti-Corrosive Anti-Sulfur Thin Film Chip Resistors

3.12.2025
1

Skeleton Opens €220M Supercapacitor Leipzig Factory

3.12.2025
3

TAIYO YUDEN Extends Polymer Hybrid Aluminum Capacitors with Higher Ripple Current and Lower Profile

3.12.2025
3

Würth Elektronik Extends its Safety Film Capacitors

3.12.2025
4

Researchers Present Novel Graphene-Based Material for Supercapacitors

3.12.2025
4

Murata Releases World First 15nF 1.25kV C0G MLCC in 1210 Size

2.12.2025
16

Samsung Releases 1uF 25V 0402 MLCC for AI Power Modules 

27.11.2025
37

TDK and NIPPON CHEMICAL to Establish Joint Venture for MLCC Material Development

27.11.2025
60

Passive Components for Next Gen Automotive Systems

26.11.2025
114

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version