Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Graphene-Based BOSC Bank Of Supercapacitor Cells

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Graphene-Based BOSC Bank Of Supercapacitor Cells

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Design Challenges with Bidirectional EV Charging

10.5.2023
Reading Time: 3 mins read
A A

Knowles Precision Devices released white paper on why bidirectional EV charging requires special attention to design.

As interest and adoption increase in the electric vehicle (EV) arena, associated technologies are advancing quickly.

RelatedPosts

RF Inductors Key Characteristics and Applications

Stacked Ceramic Capacitors Improve Efficiency in Power and RF Applications

Capacitors in Pulse Forming Network

Batteries are becoming more powerful and charging infrastructure is increasingly robust and efficient. With all these advancements, EV batteries are good for more than powering cars on the road.

Bidirectional charging capabilities are the next big perk for EV owners. Perfecting this technology means EV batteries can fuel vehicles and private homes or local grids. Right now, OEMs are part of a huge push to make bidirectional chargers resilient and reliable.

How Does Bidirectional Charging Work?

When an EV is charging, alternating current (AC) from the grid is converted into direct current (DC) electricity, which can be used by the vehicle. This conversion can be performed by the vehicle’s converter, or a converter located inside the charging apparatus.

During this process, semiconductors located inside the converter switch at high speeds to create a waveform that mimics DC electricity. In a unidirectional charging scenario, diodes continue sending current forward in one direction—towards the vehicle.

Bidirectional converters (right) are the same as unidirectional converters (left), but the second phase uses active switches to achieve bidirectionality. Credit: Yole

Replacing diodes with semiconductors, see Figure 1, allows waveforms to be made on the primary and secondary sides of the converter, so current can flow in either direction—towards the vehicle or towards the grid. Since semiconductor switching creates so much electrical noise, and there are so many more of them in bidirectional chargers, smoothing and filtering ceramic capacitors, like snubber capacitors, are implemented to smooth and reduce all of that noise. 

Why Use Bidirectional Charging in the First Place?

Even with all the excitement, battery economics is a central concern with more devices and systems on the grid. What happens when the grid gets overloaded? Experts believe that vehicle-to-grid charging is one way to manage demand-response capabilities.

Bidirectional chargers regulate the flow of electricity in both directions, which allows EV batteries to charge from the grid and discharge electricity back into the grid to power a home, office, or appliance during an outage. In other words, vehicles can pick up the slack when grids inevitably fail due to factors like weather or overload.

What are the Greatest Design Challenges Associated with Bidirectional EV Charging?

To serve their critical function, bidirectional chargers need to comply with local grid requirements, which vary across localities. Designers are tasked with ensuring communication devices and circuits can accommodate different voltages (e.g., 230V vs. 110V) and frequencies (e.g., 50Hz vs. 60Hz) depending on where the driver lives and travels to ensure safe, reliable charging and discharging.

Since bidirectional chargers send current in two different directions using one circuit, their components will experience more wear. Wear leads to overheating, voltage spikes, and current surges that could pose safety concerns. Each component in the system must be designed for longer device life and a higher number of charge/discharge cycles. Along the same lines, efficiency becomes a more critical constraint because these chargers experience a higher number of power conversion cycles than unidirectional chargers.

Adding active switches to the secondary side of the converter for bidirectional charging adds complexity to the overall design. Components must be carefully selected to handle high power without compromising safety or reliability.

For more information on bidirectional EV charging, see Knowles white paper, Making Electric Vehicle Wireless Charging a Reality. 

Related

Source: Knowles

Recent Posts

KYOCERA AVX Releases Compact High-Directivity Couplers

7.5.2025
12

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
33

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
39

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
54

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
20

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
12

Hybrid Energy Storage System for Nanosatellite Applications

1.5.2025
9

COTS-Plus Bulk Tantalum Capacitor for LEO Flight Platforms

29.4.2025
37

High Energy Density Supercapacitors for Space Applications

28.4.2025
35

April 2025 Interconnect, Passives and Electromechanical Components Market Insights

28.4.2025
69

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Tariffs Crush Sales Sentiment in April 2025 ECST Results

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • Fuse Selection Guidelines

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version