Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    Wk 5 Electronics Supply Chain Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    Wk 5 Electronics Supply Chain Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Designing a Small Integrated 500W LLC Transformer

10.10.2023
Reading Time: 5 mins read
A A

In this blog article Sotiris Zorbas, MSc, Frenetic Power Εlectronics Εngineer is explaining how to design a small integrated LLC transformer for 500W PSU application.

Let’s see the specs of this LLC center tapped PSU that we want to design Magnetics for. We are talking about a charger with 71.5V/7A output:

RelatedPosts

Power Electronics Tools for Passives and Magnetic Designs

DC/DC Push‑Pull Converter vs PSFB Design Guide

Common Mistakes in Flyback Transformer Specs

  • Our cooling conditions can be either natural cooling or some forced cooling up to 1m/s, depending on the position of fan relative to the Magnetics.
  • The intention is for the fan to be mounted on the enclosure, forcing air from the inside of the box to the environment outside. The ambient temperature inside the box is set at 40°C maximum. The fan speed will be controlled based on the core temperature of the Transformer, where a glued NTC inside an M3 bare ring terminal will be also glued to the Transformer core.
  • Using the equations and methodology of the previous Newsletters, we derived the specifications for the Transformer inductances and turns ratio.
Figure 1. PSU/Transformer specs list

Based on the findings from previous blog

In previous blog, we built some nice 2-chamber Transformers from 500W to 2kW. In all cases, the actual Transformer total losses amounted to approximately 0.6% of the total power delivered to the load. That observation is in line with our experience in Frenetic, and we will use it to minimize our design iterations.

Also, the power density for naturally cooled designs to achieve approx. ~50°C of temperature rise is somewhere between 5-9kW/L. But in our case, we have some variable fan cooling when the Transformer gets hot. That said, we will push power density more than 50% to about 12-15kW/L. Of course, these are preliminary assumptions and should be treated as such.

Figure 2.  The Core Optimizer helping us quickly find a core 
Figure 3.  PQ32/30 Bobbin/Transformer dimensions and PCB pinout

Plotting PQ core sets I quickly found a match for my specifications:

  • As mentioned, 0.6% out of the 500W are set aside for the Transformer losses, and that is 3W. Given a 50-50% split between core-winding losses we set a 1.5W core loss target.
  • From the results shown a PQ32/30 core has a power density of 14.7kW and height at 32mm which if one counts a 1.6mm FR4 and 5mm standoffs is less than the 40mm PCB height that was specified.
  • Also, instead of 24 turns suggested from the tool, 23 turns were selected to better match the turns ratio, given that the secondary turns should be a round number. In this case 7 turns for each secondary.

The windings part

All necessary info for the Winding is here. As you can see in Figure 4., we predict a 39-40 μH of leakage with 3mm of separation. The wires used are simple in stock Litz wires with different strand diameters, and my comment here is that this is a manufacturable design with the necessary margins as far as fitting goes, in place.

Figure 4.  Winding configuration and losses

The worst case condition

  • Assuming natural cooling only.
  • The PFC outputs 380V (input voltage of the LLC converter)
  • Frequency moves down to 84kHz (100kHz is the resonant freq.)
  • The rms currents increase.

We get the following performance:

✅ Tmax at 91°C below 100°C

✅ Pmax = 3.8W in line with our 3W prediction.

✅ Integrated 40μH of leakage inductance

Of course, with air cooling or higher input voltages (close to 400V) the Transformer may as well operate at 50°C under full load!

And the best part: design time, just 2hr!

Related

Source: Frenetic

Recent Posts

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
18

Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

3.2.2026
11

Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

3.2.2026
17

Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

2.2.2026
18

Calculating Resistance Value of a Flyback RC Snubber 

2.2.2026
16

Bourns Releases High‑Q Air Coil Inductors for RF Aplications

29.1.2026
38

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

28.1.2026
47

ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

28.1.2026
42

Power Electronics Tools for Passives and Magnetic Designs

3.2.2026
74

Upcoming Events

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version