Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Switched Capacitor Converter Explained

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Switched Capacitor Converter Explained

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Did Tesla Buy Maxwell for Its Ultracapacitors or Higher-Density Batteries?

20.2.2019
Reading Time: 4 mins read
A A

Source: ExtremeTech news

By Bill Howard, Tesla made headlines this month — actually, when doesn’t Tesla make headlines? — when the company bought battery-maker Maxwell for its ultracapacitor technology and its work on battery density. Analysts agreed Tesla was smart to pay in shares of Tesla stock, not cash, because Tesla has lots of stock on hand. Analysts are also divided on the prospects of ultracapacitors in the near term and Maxwell as an acquisition. But Maxwell is also a developer of other battery technology. It’s just that ultra-caps generate the most intense interest.

RelatedPosts

YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

Ultracapacitors quickly capture and release large amounts of energy stored between two charged plates. A small capacitor could retain the settings on our DVD player when it’s unplugged. Ultracapacitors could store almost all the energy of braking to a stop, then feed it back to the electric motors to accelerate back to speed. The challenge is reducing the cost, ensuring safety, and developing capacitor banks that might be in the tens of kilowatt-hours if they’re to be a significant part of Tesla’s 100-kWh over-the-road energy storage.

While ultracapacitors are attractive, Maxwell’s dry battery electrode technology for batteries, not ultracapacitors, also has a lot of promise. And that’s important because Tesla has promised to dramatically improve battery density. Having done the talk-the-talk part, Maxwell could help Tesla walk the walk as well.

Here are some numbers. (Take all numbers with a grain of salt.) A Tesla Model 3 battery pack has an energy density of 272 watt-hours per liter; the cells produce 207 watt-hours per kilogram. The dry battery technology ramp is said to be to 300 Wh/kilogram (+45 percent) “demonstrated,” Maxwell says, and then with a “path to 500 wH/Kg identified” (+142 percent or 2.4x the initial rating.)

Maxwell laid out its near term plans in a presentation and paper at the recent Power Sources conference. Maxwell says it anticipates large-scale production by 2023. Tesla says it might get to market sooner, 2020-2021.

Batteries are chemical reactions designed to throw off electrons and light up a flashlight or move an EV along the roadway. Maxwell’s special sauce involves how it mixes the chemicals in what becomes the battery electrodes with a solvent, forming a slurry. (Don’t try this at home unless you’ve got the kitchen exhaust fan running, the same rule as for making as crystal meth. Or so we hear.)

The slurry is coated on a conductor metal (aluminum or copper), then baked in long ovens. The solvent evaporates, and at the other end of the oven, you’ve got a dry electrode ready to be packaged into a battery. The technology Tesla acquires from Maxwell calls for a binding agent and a conductive agent to take the place of the solvent. And it’s this process that promises to get batteries to 300-watt-hours-per-kilogram of density. The same thousand-pound battery unit that delivers, say, 250 miles of driving pleasure could now go 375 miles, or you could stick with 250 miles and the battery weight could be reduced to around 600 pounds.

Does the deal make sense? Yes, says Cowen analyst Jeffrey Osborne:

We see the deal offering three layers of synergies for Tesla relative to other would be-acquirers. Namely, applications in automotive, grid applications combining lithium ion batteries and ultracapacitors for grid stabilization and ancillary services, and opportunities for Tesla to improve energy density, and thus range, with Maxwell’s dry electrode capability and graphite expertise.
Ravi Manghani, director of energy storage at Wood Mackenzie, told Quartz.com that it’s the dry electrode battery technology that Tesla wants, “the early results of which look promising.”

Tesla told Barron’s, “We are always looking for potential acquisitions that make sense for the business and support Tesla’s mission to accelerate the world’s transition to sustainable energy.” This would be Tesla’s fifth acquisition. The last was Perbix, which does manufacturing automation, in 2017.

The deal had little effect on Tesla’s stock price, while Maxwell’s zoomed 50 percent the morning of the announcement from just over $3 a share to $4.58 a share. It now stands at $4.74. The purchase offer was for $4.75. Maxwell’s price hit $40 a share in the 1990s.

Maxwell Technologies, not to be confused with Japanese recording media and battery maker Maxell (as in MAXimum capacity dry cELL), is a San Diego company that dates to 1965 and focuses on developing and manufacturing energy storage and power delivery solution-related products for automotive, heavy transportation, renewable energy, backup power, wireless communications, and industrial and consumer electronics applications, according to the company website.

Tesla and battery-maker Panasonic have had a long relationship, but monogamy gets boring after a while. Quartz says Tesla wants to be less dependent on Panasonic. In January, Tesla said it’s open to using battery cells from Chinese companies in Tesla’s China Gigafactory (now under construction), in part because Chinese subsidies for EVs sold in China are limited to cars using China-sourced batteries. But in the past, Tesla has said, or suggested, that there’s something special about the batteries coming out of the Tesla-Panasonic battery factories.

Meanwhile, Panasonic and Toyota set up a partnership to develop next-generation batteries. So the Maxwell deal may well be Tesla’s way of stepping up the power-density of Tesla-made batteries. Tesla could also develop ultra-capacitor packs as solid-state turbochargers (so to speak) to boost acceleration for coming up to speed quickly on highway on-ramps, or turning a 50-70 mph two-lane passing maneuver into a 50-90 run, then dump the excess energy when you brake hard (oncoming traffic) back into the capacitors.

Related

Recent Posts

European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

30.7.2025
3

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

30.7.2025
2

Switched Capacitor Converter Explained

28.7.2025
11

Samsung Releases 1000V 1812 X7R 100nF MLCC for Electric Vehicles

28.7.2025
16

Samsung Electro-Mechanics Releases Molded MLCC Capacitors

28.7.2025
21

Researchers Demonstrated 200C Polymer Film Dielectric

28.7.2025
10

Researchers Demonstrated Zinc-Ion Based Photo-Supercapacitor

28.7.2025
9

The Connector Industry is Undergoing Transformation

25.7.2025
34

TDK Presents Various Large-Size Ferrite Cores for Industrial Applications

25.7.2025
14

Würth Elektronik Opens Branch in South Africa

24.7.2025
24

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version