Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Releases COMPLETE Library v25.6 for Keysight ADS with 14 New Scalable Models

    Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

    Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

    Samtec Agreed with Molex Second-Source License on High-Speed Interconnects for Data Centers

    Panasonic Industry Releases Highest Capacitance 63V Conductive Polymer Tantalum Capacitors in 3mm Height

    August 2025 ECIA US Components Sales Sentiment Remains Strong

    Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Releases COMPLETE Library v25.6 for Keysight ADS with 14 New Scalable Models

    Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

    Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

    Samtec Agreed with Molex Second-Source License on High-Speed Interconnects for Data Centers

    Panasonic Industry Releases Highest Capacitance 63V Conductive Polymer Tantalum Capacitors in 3mm Height

    August 2025 ECIA US Components Sales Sentiment Remains Strong

    Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Doped electrodes cram charge into supercapacitors

2.1.2016
Reading Time: 2 mins read
A A

source: Royal Society of Chemistry article

21 December 2015 Tim Wogan

RelatedPosts

Modelithics Releases COMPLETE Library v25.6 for Keysight ADS with 14 New Scalable Models

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

A new supercapacitor electrode material has been created by Chinese researchers that can store much more energy than conventional supercapacitors. The material, which allows an electrode to store charge in two different ways, could make supercapacitors a viable alternative to batteries.

To produce their supercapacitor, Huang’s group deposited carbon onto self-assembled silica templates, which were etched away to reveal the highly conductive material © Science/AAAS

Supercapacitors have charge capacities many times higher than traditional capacitors, which store electric charge on two plates separated by a dielectric material. They fall into two broad categories: the first, called electrical double layer capacitors, use electrolytes containing solvated ions, which are attracted to, and form, layers around the electrodes, but do not actually exchange electrons with them. These usually use porous carbon electrodes as the surface area is crucial to maximising the capacitance, but even with surface areas as large as 2000–3000 m2/g , energy storage still falls far short of that of batteries.

An alternative design of supercapacitor is sometimes called an electrochemical capacitor or pseudocapacitor, and relies on redox reactions between the electrolyte and the solvent similar to those that occur in a battery. Unlike in a traditional battery, however, the reactions are highly reversible and confined to the surface of the electrode, which makes it possible to charge and discharge much more easily. Such capacitors have used various electrode materials such as conductive polymers, but these lack the cycling stability for commercial devices.

An elegant solution to these devices’ problems is to combine the two using nitrogen-doped porous carbon, as the carbon can provide electrical double layer capacitance and the nitrogen vacancy sites can reversibly incorporate protons. However, previous electrodes using ordered mesoporous carbon have proved too resistive to provide either high capacitance or high charge capacity.

Increasing capacity
Fuqiang Huang and colleagues at the Shanghai Institute of Ceramics in China have devised a new method to produce a nitrogen-doped, graphene-like structure, by forming a template comprising long tubes from a self-assembled silica template. They deposited carbon onto the template by chemical vapour deposition using methane and ammonia before etching the template away. The degree of nitrogen-doping could be carefully controlled by varying the proportions of the gases.  The resulting structure was highly conductive.  The researchers produced electrodes from this material by pressing powders of it into an inert graphene foam.

The researchers found that the new devices could store three times more charge than current supercapacitors. The researchers believe the devices could potentially compete with batteries, perhaps even lithium-ion ones, while still charging and discharging far faster. ‘Can you imagine?’ says Huang. ‘Our device can be 100% charged in seven seconds.’ The team is now working to develop its device towards industrial application, and has devised a more industrially compatible, template-free way to produce the active material.

Patrice Simon of the Paul Sabatier University in France describes the figures as ‘really good, even outstanding, compared to what we are used to observing’. He notes, however, that most commercial supercapacitors use organic electrolytes as they can be charged up to nearly 3V without electrolysis. ‘We know this material can only be used in aqueous electrolytes because nitrogen redox reactions are not effective in organic electrolytes,’ he says. However, he adds that, if similar energy densities can be achieved, aqueous electrolytes would be preferable as the organic electrolytes used, such as acetonitrile, are often highly toxic.

Related

Recent Posts

Modelithics Releases COMPLETE Library v25.6 for Keysight ADS with 14 New Scalable Models

18.9.2025
1

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

18.9.2025
1

Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

18.9.2025
5

Panasonic Industry Releases Highest Capacitance 63V Conductive Polymer Tantalum Capacitors in 3mm Height

18.9.2025
5

August 2025 ECIA US Components Sales Sentiment Remains Strong

18.9.2025
5

Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

17.9.2025
7

Electronics Weekly Announcing Finalists for Elektra Awards 2025

16.9.2025
9

Exxelia Exhibit at Electronica India September 17–19, 2025

15.9.2025
28

Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

15.9.2025
12

VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

15.9.2025
19

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version