Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Doped electrodes cram charge into supercapacitors

2.1.2016
Reading Time: 2 mins read
A A

source: Royal Society of Chemistry article

21 December 2015 Tim Wogan

RelatedPosts

Smolteks CNF MIM Capacitor Break 1 µF/mm²

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

A new supercapacitor electrode material has been created by Chinese researchers that can store much more energy than conventional supercapacitors. The material, which allows an electrode to store charge in two different ways, could make supercapacitors a viable alternative to batteries.

To produce their supercapacitor, Huang’s group deposited carbon onto self-assembled silica templates, which were etched away to reveal the highly conductive material © Science/AAAS

Supercapacitors have charge capacities many times higher than traditional capacitors, which store electric charge on two plates separated by a dielectric material. They fall into two broad categories: the first, called electrical double layer capacitors, use electrolytes containing solvated ions, which are attracted to, and form, layers around the electrodes, but do not actually exchange electrons with them. These usually use porous carbon electrodes as the surface area is crucial to maximising the capacitance, but even with surface areas as large as 2000–3000 m2/g , energy storage still falls far short of that of batteries.

An alternative design of supercapacitor is sometimes called an electrochemical capacitor or pseudocapacitor, and relies on redox reactions between the electrolyte and the solvent similar to those that occur in a battery. Unlike in a traditional battery, however, the reactions are highly reversible and confined to the surface of the electrode, which makes it possible to charge and discharge much more easily. Such capacitors have used various electrode materials such as conductive polymers, but these lack the cycling stability for commercial devices.

An elegant solution to these devices’ problems is to combine the two using nitrogen-doped porous carbon, as the carbon can provide electrical double layer capacitance and the nitrogen vacancy sites can reversibly incorporate protons. However, previous electrodes using ordered mesoporous carbon have proved too resistive to provide either high capacitance or high charge capacity.

Increasing capacity
Fuqiang Huang and colleagues at the Shanghai Institute of Ceramics in China have devised a new method to produce a nitrogen-doped, graphene-like structure, by forming a template comprising long tubes from a self-assembled silica template. They deposited carbon onto the template by chemical vapour deposition using methane and ammonia before etching the template away. The degree of nitrogen-doping could be carefully controlled by varying the proportions of the gases.  The resulting structure was highly conductive.  The researchers produced electrodes from this material by pressing powders of it into an inert graphene foam.

The researchers found that the new devices could store three times more charge than current supercapacitors. The researchers believe the devices could potentially compete with batteries, perhaps even lithium-ion ones, while still charging and discharging far faster. ‘Can you imagine?’ says Huang. ‘Our device can be 100% charged in seven seconds.’ The team is now working to develop its device towards industrial application, and has devised a more industrially compatible, template-free way to produce the active material.

Patrice Simon of the Paul Sabatier University in France describes the figures as ‘really good, even outstanding, compared to what we are used to observing’. He notes, however, that most commercial supercapacitors use organic electrolytes as they can be charged up to nearly 3V without electrolysis. ‘We know this material can only be used in aqueous electrolytes because nitrogen redox reactions are not effective in organic electrolytes,’ he says. However, he adds that, if similar energy densities can be achieved, aqueous electrolytes would be preferable as the organic electrolytes used, such as acetonitrile, are often highly toxic.

Related

Recent Posts

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
20

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
8

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
18

VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

17.6.2025
15

Chinas MLCC Makers Reach 10% Market Share

16.6.2025
63

Smoltek CNF-MIM Capacitor Commercialization Update

11.6.2025
31

Understanding Switched Capacitor Converters

9.6.2025
75

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
36

Knowles Extends Range and Performance of C0G MLCC Capacitors

6.6.2025
27

Panasonic Releases New Aluminum Hybrid Capacitors with High Ripple Current in Compact Size

6.6.2025
30

Upcoming Events

Jun 24
16:00 - 17:00 CEST

Limitations of PSFB converters and improvements by a variable inductor ft. Sam Ben-Yaakov

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version