Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Multilayer Chip Inductors Offer for RF and Wireless Designs

    Researchers developed a polymer capacitor by combining two cheap, commercially available plastics. The new polymer capacitor makes use of the transparent material — pictured here, with vintage Penn State athletic marks visible through it — to store four times the energy and withstand significantly more heat.  Credit: Penn State

    Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

    ECIA January 2026 Reports Strong Sales Confidence

    Vishay Unveils Ultra-Compact 0201 Thick Film Chip Resistors

    Würth Elektronik Component Data Live in Accuris

    Coilcraft Releases Automotive Common Mode Chokes

    MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    SCHURTER Introduces 2410 SMD Fuse for Robust AC/DC Protection

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Multilayer Chip Inductors Offer for RF and Wireless Designs

    Researchers developed a polymer capacitor by combining two cheap, commercially available plastics. The new polymer capacitor makes use of the transparent material — pictured here, with vintage Penn State athletic marks visible through it — to store four times the energy and withstand significantly more heat.  Credit: Penn State

    Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

    ECIA January 2026 Reports Strong Sales Confidence

    Vishay Unveils Ultra-Compact 0201 Thick Film Chip Resistors

    Würth Elektronik Component Data Live in Accuris

    Coilcraft Releases Automotive Common Mode Chokes

    MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    SCHURTER Introduces 2410 SMD Fuse for Robust AC/DC Protection

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Electric Vehicle Technology Trends

18.4.2024
Reading Time: 5 mins read
A A

This article based on Knowles Precision Devices blog looks at three key trends impacting EV development that we are currently monitoring around shifting semiconductor development, in-vehicle system integration as a way to control costs, and the evolution of the EV charging ecosystem.

The market demands and technology trends that impact all aspects of electric vehicle (EV) development are constantly evolving. As trends change, so do the requirements for EV power systems, which impacts the demands placed on the components we supply.

RelatedPosts

Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Trend 1: Shifting to Wide Band Gap Semiconductors

Consumer demands for longer range per charge and faster charging times are leading to EV power systems that must operate at higher voltages and temperatures. But as this shift happens, power system efficiency can’t suffer. In fact, battery systems must actually become more efficient. To increase efficiency of these high-voltage systems, we are starting to see a shift from using conventional silicon-based (Si) semiconductors to using wide-bandgap (WBG) semiconductors built with silicon carbide (SiC) or gallium nitride (GaN).

Currently, SiC-based WBG semiconductors are being used in applications such as inverters in 800V systems since these components enable higher switching frequencies and can help reduce the size and weight of the system. We are also seeing GaN-based semiconductors start to emerge as an option for lower-power systems such as the DC-DC converters that manage the auxiliary systems in the vehicle. If you look at this from the functional block diagram level (Figure 1), the table below shows how we see the device technology to WBG trend shaping up:

Functional Block FromTo
OBCIGBTSiC MOSFET, GaN HEMT
InverterIGBTSiC MOSFET
DC-DCIGBTSiC MOSFET, GaN HEMT
Figure 1. EV functional block diagram

While this shift is happening, researchers are of course already trying to further push limits as they work on developing ultra-WBG semiconductors. These semiconductors are poised to operate at even higher voltages and temperatures while being built using innovative materials that make them even smaller and lighter. It will be exciting to keep an eye on these developments and what will be possible in the near future with these components!

Trend 2: Integrating In-Vehicle Systems

Like most industries, EV manufacturers feel the pressure to reduce costs, even as they push the limits of what vehicles are capable of. Integration, or the combining of individual subsystems (functions from the EV block diagram in Figure 1) together into multi-function modules, is now a growing trend to help curb costs. Below are three in-vehicle systems where integration is starting to (or will likely start to) play a key role:

  • Configuring bidirectional charging, which enables vehicle-to-home (V2H) and vehicle-to-grid (V2G) charging (discussed more below)
  • Combining the onboard charger (OBC) and the DC-DC converter into a single unit that is smaller and lighter while offering increased power density
  • Incorporating all-in-one power systems such as an 8-in-1 power system that combines many key components of the electric drive train into a single module

Looking back at the first trend we discussed around WBG semiconductors, you can see how we feel these two trends tie together in the table below:

ThemeFromTo
Device TechnologyIGBTSiC MOSFET, GaN HEMT
Voltage Level650 (for 400V Systems)1200V (for 800V systems)
IntegrationIndividual SubsystemsHighly Integrated Systems

Trend 3: Boosting the EV Charging Ecosystem

As we all know, charging is a key part of the EV ecosystem – without sufficient charging, EVs simply don’t work. But charging is no longer as simple as having a means to plug in the vehicle and get it juiced up. There are a lot of market and societal demands EV engineers must also consider that range from rapid charging, especially when people are on the go, to the desire to use the energy generated from charging more efficiently. As a result, we are seeing several in-vehicle changes starting with the big shift from 400V to 800V systems, which is necessary for rapid charging to become a reality.

Looking at ways to use the energy generated from vehicle charging more efficiently, especially excess energy, there are a few key parts of this trend. As mentioned above, V2H and V2G are bidirectional charging methods that can further proliferate the sustainability benefits of EVs beyond the vehicle. In a V2H application, the EV battery acts as a mobile power bank that can supply a person’s home with electricity during peak hours. A V2G scenario is similar except the energy can be fed back to the grid to help balance energy fluctuations and promote grid sustainability. And similarly, there is also a demand from consumers around the concept of “green mobility,” where the EV, the EV charger, and renewable energy sources are all integrated on the grid to avoid using electricity generated from coal to charge vehicles. 

Related

Source: Knowles Precision Devices

Recent Posts

ECIA January 2026 Reports Strong Sales Confidence

19.2.2026
8

MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

18.2.2026
58

Skeleton Technologies Expands in U.S. to Power AI Data Centers

9.2.2026
33

DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

6.2.2026
18

Würth Elektronik Announces Partner Program

6.2.2026
41

Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

5.2.2026
95

Top 10 Connector Vendors by Product Type

29.1.2026
92

Component Distribution Supply Chain January 2026

28.1.2026
90

Samsung Q4 2025 Results: MLCC focus for AI, Server and Automotive

26.1.2026
125

Upcoming Events

Feb 24
16:00 - 17:00 CET

Mastering Galvanic Isolation: Ensuring Safety in Power Electronics

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • 3-Phase EMI Filter Design, Simulation, Calculation and Test

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version