Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

EMC filters from SMP for modern SiC and GaN applications

6.5.2019
Reading Time: 2 mins read
A A

Source: SMP news

SMP Sintermetalle Prometheus GmbH & Co KG (SMP) presents All Mode EMC filters. The All Mode filters have a high frequency stability. The materials developed by SMP specifically for these filters are effective for frequencies up to the gigaHertz range.

RelatedPosts

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

Samtec Releases 800-Position High-Performance Array Connectors  

The All Mode design simultaneously damps both differential mode and common mode noise. The High Frequency Composite Materials (HFCM) from SMP satisfy all of the requirements of modern SiC and GaN applications. By combining HFCM and All Mode technologies it is possible to reduce the filter components required in a system by about 50 percent, so for example no additional common mode chokes or filters are needed.

EMC filters reduce interference currents and voltage spikes in power converter systems which are generated by parasitic effects and cyclic elements of the system. The material plays an important part in this, as SMP’s Managing Director Johannes Gemenetzis, an engineer with a Master’s degree in Electrical Engineering and Information Technology, explains:

“The target is to achieve a stable inductance at the working point over the entire frequency spectrum in order to maximize the interference suppression. Compared to the standard technologies which use materials such as ferrite, electrical steel sheets and nanocrystalline ribbon, the All Mode EMC filters are up to 40 percent lighter and reduce interference levels by as much as 40 dB[µV].”

Because they are made from magnetostriction-free materials, the All Mode filters are noiseless. “Due to the stability of their inductance, we realize our EMC filters with a smaller inductance, whereby a high dynamic of the system is achieved. The voltage spikes which occur periodically with the switching frequency of the inverter are immensely reduced. So the life-time of the electric motors is much longer.

The efficiency of the entire system is further improved due to very low losses of the materials. Moreover, fewer filter components are needed, so volume is reduced and the cost effectiveness of the power electronic system as a whole is increased substantially. The fast switching SiC and GaN semiconductors place high demands on the magnetic materials. Decisions are based on materials! With the development and production of our own materials, we have solutions for every application.”

The family-owned company with headquarters in Graben-Neudorf in Germany specialises in the development and manufacture of filter systems, inductive components and magnetically soft moulded parts. The portfolio of components produced by the company is designed to handle currents up to 2000 A, for special applications up to 3000 A, and frequencies up to the gigaHertz range.

The materials have high saturation induction of up to 2 Tesla. The components are produced with dimensions from 19 mm to 300 mm and weights from 0.05 kg to 130 kg. The filter systems and inductive components are used in power electronics, automation and drive technology applications for industries such as electromobility, railway and marine engineering, medical technology, aerospace and renewable as well as conventional power generation.

Related

Recent Posts

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
0

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

28.8.2025
2

Ripple Steering in Coupled Inductors: SEPIC Case

27.8.2025
2

TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

27.8.2025
6

SEPIC Converter with Coupled and Uncoupled Inductors

26.8.2025
10

Coupled Inductors in SEPIC versus Flyback Converters

26.8.2025
9

Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

25.8.2025
11

TDK Extends SMT Gate Drive Transformers to 1000 V

20.8.2025
20

Stackpole Unveils Metal Element High Current Chip Jumpers

19.8.2025
38

Common Mistakes in Flyback Transformer Specs

15.8.2025
55

Upcoming Events

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version