Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Enhancing Mechanical and Electrochemical Properties of Flexible Supercapacitors

22.10.2024
Reading Time: 3 mins read
A A

Researchers from China published a study in Carbon Journal of enhancing the mechanical and electrochemical properties of flexible supercapacitors using reduced graphene oxide composite films through the combined actions of chitosan and polypyrrole.

Researchers from Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, China published results of their work to improve properties of flexible supercapacitors.

RelatedPosts

Würth Elektronik Releases Push-Button and Main Switches

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

Stackpole Extends Voltage of High Temp Chip Resistors

Abstract

With high conductivity, large surface area and a large number of interlayer structures, graphene has become an excellent choice for electrode materials in supercapacitors, but its mechanical strength and electrochemical performance need to be further improved.

Herein, chitosan and polypyrrole were introduced into graphene oxide successively by a simple and low-cost method, and then the composite film was reduced by hydroiodic acid, leading to excellent mechanical and electrochemical properties.

Structural characterizations verified the existence of covalent bond, π-π interaction and hydrogen bond, effectively improving the poor interface bonding between graphene sheets. The tensile strength and the microhardness of the composite film was increased by 182 % and 3000 % compared with original film. Electrochemical tests showed significantly improvement of the electrochemical activity, and the capacitance value could reach 170 F/g.

This composite film with high strength and high electrochemical performance will become a promising candidate material in the field of flexible supercapacitors.

Results Summary and Conclusion

CS and PPy were grafted onto the surface of GO through various intermolecular forces such as covalent bond, π-π interaction, and hydrogen bond, which effectively expanded the layer spacing between GO sheets, improving the mechanical strength and electrochemical strength of the composite film.

Specifically, the tensile strength of the film increased from 4.68 MPa to 13.20 MPa, and the microhardness increased from 207 HV to 6418 HV, which was attributed to the consumption of load by intermolecular forces. The capacitance value increased from 64 F/g to 170 F/g due to the effect of PPy on the increase of the active area of GO.

This work will provide an economical and feasible way for supercapacitors with high mechanical and electrochemical properties. Despite the positive outcomes, there are still some limiting factors and challenges. In practical applications, the performance of supercapacitors may degrade over time.

Therefore, it is necessary to conduct in-depth research on the long-term stability and durability of the composite material, including its storage and cycling stability under different environmental conditions, to further enhance the performance of the composite material and promote its application in supercapacitors and other related fields.

Read the original full article: https://doi.org/10.1016/j.carbon.2024.119715

Related

Source: Science Direct

Recent Posts

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
28

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
55

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
30

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
42

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
38

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
34

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
20

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
29

Researchers Presents High-Performance Carbon-Based Supercapacitors

1.8.2025
27

Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

1.8.2025
5

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version