Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

    DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

    Würth Elektronik Announces Partner Program

    Vishay Releases Compact 0806 Low‑DCR Power Inductor

    Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

    DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

    Würth Elektronik Announces Partner Program

    Vishay Releases Compact 0806 Low‑DCR Power Inductor

    Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Ensuring reliability of passive components for automotive designs

26.1.2019
Reading Time: 2 mins read
A A

Source: TT Electronics article

By Marcos Hsiao, Global Product Line Director, Magnetics, TT Electronics, Sensors and Specialist Components

RelatedPosts

Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

Würth Elektronik Announces Partner Program

It’s hard not to feel some empathy for basic passive components. Why so? While active devices such as processors, power-management ICs, discrete power devices, and RF components get lots of designer (and media) consideration, those humble resistors, capacitors, and magnetics often get far less in comparison. They’re expected to do one thing, do it well, and do it under difficult circumstances, while “stepping aside” to let those active devices shine through.

But system reliability requires that all the many individual components work “to spec” across the entire operating spectrum of temperature, vibration, and even contaminants. For this reason, engineering and fabricating a reliable passive device which meets the arduous and stringent automotive-segment mandates is more involved than just paying modest attention to electrical and mechanical details, although those are very necessary steps.

For designers, there’s much more to selecting an automotive passive component than checking that it is “qualified.” It’s also a matter of asking “qualified for what?” There is no single minimum auto standard; instead, the industry has defined levels of ruggedness for the various settings within the vehicle. After all, the underhood stress situation is far different than the in-cabin environment.

Qualification for automotive passives begins with the industry’s AEC-Q200 standard (note that the associated Q100 standard deals with ICs, while Q101 is for discrete semiconductors). There are five overall grades, with four them spanning vehicle use from the relatively benign passenger compartment to the more hostile underhood environment.

 

[AEC – the Automotive Electronics Council – is an industry organisation that promotes the standardisation of reliability or qualification standards for automotive electronic components; members include major automotive manufacturers and major electronic component manufacturers.]

Although operating temperature range is a critical ruggedness parameter called out by AEC-Q200, it is not the only one. Among the many others defined are temperature cycling, thermal stress, dimensional stability, terminal strength, solvent resistance, shock and vibration, solderability, flammability, and ESD – all requirements that need to be attained while still meeting the basic electrical-performance specifications. In short, it’s not easy to get that “sticker” which proclaims “qualified to AEC-Q200, Grade level x.”

As a result, designers have two issues to manage.

First, they must be careful not to “overspecify” the passives on their BOM (Bill of Materials) – there’s a monetary and even sourcing availability cost involved with spec’ing Grade 1 (underhood) when Grade 3 will do. There’s also the opposite concern of making sure that the supply chain (purchasing, inventory, production) does not substitute a lower-performance grade for the one specified, whether due to human error, availability, or a misguided attempt to save some money.

When that sort of passive-component downgrade happens, there are multiple possible consequences, all unpleasant: unexpected field failures, finger-pointing (many times misguided and premature) often starting with the design team as to what went wrong and whose fault it was, the need for various forensic teams to do serious, time-intensive “detective” work, with report writing, and an action plan; perhaps even recalls and lawsuits (yes, these things happen…).

So the lesson is clear: be diligent in understanding the various levels and specifics of passive-components and their qualification, choose the right one, work closely with your vendors, and be sure it is actually used where and how it is intended by the design and qualification teams.

Related

Recent Posts

Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

6.2.2026
11

Vishay Releases Compact 0806 Low‑DCR Power Inductor

5.2.2026
21

Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

5.2.2026
56

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
76

Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

3.2.2026
18

Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

3.2.2026
35

Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

2.2.2026
28

Calculating Resistance Value of a Flyback RC Snubber 

2.2.2026
29

Bourns Releases High‑Q Air Coil Inductors for RF Aplications

29.1.2026
41

Upcoming Events

Feb 11
16:00 - 17:00 CET

What’s Next in Power Electronics Design

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version