Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Fusible Resistors vs Fuses Key Differences Explained

5.1.2022
Reading Time: 4 mins read
A A

Hardware electronic designers can use a conventional fuse, or they can use a fusible resistor to protect their circuits. What will work best in the specific application?

Chargers and external power supplies are essential devices for consumer electronics, especially mobile and wearable products. Keeping them powered and charging them fast is very important to the end-users. Example products include tablet computers, personal computers, mobile phones, gaming devices, mp3 players, wireless smartwatches, headphones, fitness monitors and medical monitors. Downtime to recharge these devices interrupts usage, and consumers need faster recharge times for maximum uptime of their devices.

RelatedPosts

Overvoltage and Transient Protection for DC/DC Power Modules

Choosing the Right Capacitor: The Importance of Accurate Measurements

Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

Faster charging requires a higher power charger or power supply. Higher power requires designers to put greater emphasis on safety while being challenged by cost and size constraints and more stringent efficiency requirements. While most designers realize they need overcurrent protection for their charger or power supply, they may not know that they can take two different approaches to incorporate overcurrent protection into their design.

Designers can use a fusible resistor (Figure 1a) or they can use a conventional fuse (Figure 1b)

Figure 1a.: fusible through-hole resistors; source: Vishay
Figure 1b.: SMD fuses; source: Littelfuse

Fusible resistors combine the benefits of overcurrent protection and inrush current protection in one component. However, fusible resistors respond differently to overcurrents and have other impacts on charger and power supply efficiency than fuses.

KEY DIFFERENCES IN BRIEF

Fuses: Reducing the risk of fire by opening at lower temperatures

A fusible resistor opens up like a fuse when its current rating is exceeded. The component is generally a nichrome element with a melting temperature of around 1400° C. Nichrome has a low thermal coefficient of resistance that allows the resistor to have a stable resistance over temperature. The 1400° C melting temperature allows surrounding components and the PC board to get hot during an overcurrent condition.

Fuses are generally copper or silver elements with a melting temperature typically between 962° C and 1083° C. Fuses also have a high thermal coefficient of resistance, at least a factor of 10 higher than a nichrome fusible resistor. As a result, the temperature of a fuse will increase faster when an overcurrent condition occurs. The fuse’s resistance rises more quickly, bringing the fuse to its melting point sooner. A fuse prevents a heat build-up that would otherwise occur when a fusible resistor is subject to an overcurrent condition. The higher heat generated by the fusible resistor can damage other components and potentially lead to the ignition of combustible components near the fusible resistor.

Fusible resistors: Two functions in one package

The primary benefit of using a fusible resistor is that its resistance function provides a limitation on inrush current. A fusible resistor used as the main overcurrent component in a power supply or charger (as shown in Figure 2a) can have a resistance of 10 Ω. A fuse, in contrast, has a resistance in the milliohms to 100s of milliohms range. Designers can use a fuse and an NTC thermistor to obtain equivalent overcurrent protection and inrush current limitation (Figure 2b). An NTC thermistor has a resistance that can be as high as 10 or 20 Ω initially; however, it falls into the 10s of milliohm range during steady-state operation of the power supply.

Figure 2a. Power supply/charger circuit using a fusible resistor for overcurrent protection and inrush current limitation. Source: Littelfuse
Figure 2b. Power supply/charger circuit using a fuse for overcurrent protection and an NTC thermistor for inrush current limitation (if needed). Source: Littelfuse

Fusible resistors appear to offer space-saving over using separate fuses and thermistors. However, the heat generated by fusible resistors could require spacing between components. Fusible resistors rated up to 10 W require other parts to be at least 0.5 inch away. If rated above 10 W, and 1 inch spacing is needed. When chargers and power supplies need to be in small, compact packages, the necessary spacing required around the fusible resistors could leave the circuit designer with inadequate space for the complete design.

Related

Source: Electronics360

Recent Posts

Overvoltage and Transient Protection for DC/DC Power Modules

13.11.2025
21

Choosing the Right Capacitor: The Importance of Accurate Measurements

12.11.2025
37

RF Inductors: Selection and Design Challenges for High-Frequency Circuits

10.11.2025
49

Transformer Safety IEC 61558 Standard

7.11.2025
27

ESR of Capacitors, Measurements and Applications

7.11.2025
95

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
75
Image credit: Samtec

How to Match the Right Connector with Protocol Requirements

6.11.2025
19

Transformer Design Optimization for Power Electronics Applications

4.11.2025
26

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

3.11.2025
31

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version