• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

High Voltage Ceramic Capacitors for Electric Vehicles

25.1.2022

Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

23.5.2022

Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

21.5.2022

Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

19.5.2022

Stackpole Presents High Current Metal Shunt Resistors

19.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

    Panasonic Releases SMD Automotive Power Choke Coil

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Yageo Venture to Acquire 30% of APEC and Step Into Semiconductor MOSFET Business

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

    Panasonic Releases SMD Automotive Power Choke Coil

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

High Voltage Ceramic Capacitors for Electric Vehicles

25.1.2022
Reading Time: 7 mins read
0 0
0
SHARES
276
VIEWS
High voltage ceramic capacitors for electric vehicles applications are discussed in a technical paper written by Jeff Lee, KYOCERA AVX Components Corporation.

Introduction

Electric vehicles (EVs) have accelerated the demand for high-performance, high-reliability capacitor technologies. The wide array of voltage, power, and size requirements of the various electrical subsystems in modern EVs necessitates careful capacitor selection by designers. As shown in the blue segments of figure 1, these subsystems include AC-DC conversion, DC-DC conversion, power management, and battery monitoring, to name a few.

Figure 1: EV building blocks
Figure 2: Multi-layer ceramic capacitor (MLCC) construction

The four most common capacitor technologies that meet the strict quality and reliability demands of automotive AECQ-200 standards are aluminum electrolytic, tantalum, polymer film, and ceramic. Aluminum electrolytics have wide voltage and capacitance ratings at attractive price points but suffer from reliability issues due to electrolyte volatilization and leakage. Tantalum devices have excellent electrical stability over a wide temperature range but suffer from lower voltage ratings and potential short circuit failure modes.

RelatedPosts

Kyocera to Build its Largest Plant in Japan for Crystals and Semiconductor Packages

Supercapacitors in Electric Vehicles

KYOCERA AVX Released Modeling and Validation Tool for IoT Devices

Polymer film capacitors are widely used in industrial circuits due to their excellent inrush current handling capability and high reliability but may be unsuitable in many automotive applications due to their large form-factor and high relative price. A multi-layer ceramic capacitor (MLCC) is shown in figure 2.

Figure 3: MLCC floating pattern for higher voltage capabilities

MLCCs consist of multiple layers of electrodes separated by ceramic dielectrics. The dielectric
thickness determines the voltage rating, and the size and number of electrode layers determine
the capacitance. The ends of the ceramic stack up are plated to form the electrodes for connection to the outside world. In high voltage applications, the voltage rating can be increased through the use of a slightly different structure employing floating electrodes. As shown in figure 3, these floating electrodes create two series capacitive layers, effectively splitting the voltage potential.

When considering MLCCs for high voltage applications, designers should also know that ceramic dielectrics are not all created equal. Capacitors are typically assigned a three-letter code based on their operating temperature range and environmental sensitivity for a given dielectric. Two standard codes are C0G and X7R. Figure 4 highlights the differences between these two capacitor codes.

Figure 4: Physical differences between C0G and X7R ceramic capacitors

Figures 5. and 6. demonstrate how these capacitor codes behave with different DC voltages and temperatures. As one can see, C0G (also called NP0) is extremely stable across voltage and temperature. This stability does, however, come with a tradeoff of cost and physical size.

Figure 5: C0G (NP0) and X7R ceramic capacitors sensitivity to an applied voltage
Figure 6: C0G (NP0), X7R, and Y5V ceramic capacitors sensitivity to environmental temperature

The ceramic capacitor stands out for its wide voltage range and low series resistance (ESR). These characteristics make it particularly well suited to many automotive applications. However, understanding the structure and composition of MLCC capacitors is critical to selecting the proper variant and designing a successful product.

X and Y Capacitors

Figure 7: Class X Capacitor for Cross-Line Connection

In many high voltage AC circuits, capacitors are required on the power input lines for electromagnetic interference filtering. MLCC capacitors can be well suited for this task and are generally divided into two rating classes: X and Y.

As shown in figure 7, X capacitors are used for line-to-line cross-connections. They are designed to fail in the short circuit mode to activate upstream overcurrent protection devices like fuses or breakers.

Figure 8: X class capacitor endurance category.
Figure 9: Y Capacitor for Line-to-Ground Connection

X capacitors are subcategorized by their voltage pulse endurance, and must be adequately chosen for a given application to guarantee safety. Figure 8 presents the ranges for X1, X2, and X3 capacitors.

On the other hand, Y capacitors are used in line-to-ground connections, as shown in figure 9. These capacitors are designed to fail in the open configuration, with a safety goal of preventing high voltages from reaching user-accessible parts.

Y capacitors are subcategorized by their pulse endurance and their overall voltage tolerance. Figure 10 presents the ranges for Y1 to Y4 capacitors. In automotive applications, these capacitors are used to protect battery cells, high voltage buses, data lines, and other electric drive system
components from harmful EMI noise.

Figure 10: Y class capacitor categories

High Voltage Subsystem Examples

The following examples present use cases for MLCC capacitors in high voltage electric vehicle subsystems. A practical application example comes from the compressor motor of an EV air conditioning system.

This motor is powered by an AC inverter and requires a 22nF, 1.5kV capacitor with a Y rating for filtering EMI to ground. The schematic and PCBA are shown in figure 11, where high voltage MLCCs were successfully implemented in production for this purpose.

Figure 11: Multiple MLCCs used as a Y capacitor for inverter EMI filtering

Another example examines the on-board charger present in EVs for recharging internal batteries. The top-level block diagram is shown in figure 12.
In this example, the charger accepts AC shore power, and using a PFC AC-DC converter, generates the appropriate charging voltage for the batteries.

The AC input lines and the DC output filter require X and Y high voltage capacitors for filtering. MLCCs were successfully employed in many of these designs to achieve a voltage tolerance greater than 630V while satisfying AECQ-200 requirements and meeting physical size targets.

Figure 12: EV On-Board Battery Charger

Conclusion

Electric vehicle systems have created new demands for high voltage, high-reliability capacitors, particularly in X and Y filtering circuits. MLCCs are available in a wide range of structures and compositions and can be well suited to satisfy these demands.

MLCCs can be used to provide high voltage ratings, low ESR, and favorable cost and size tradeoffs from AC-DC converters to high power snubbers.

Source: AVX

Related Posts

Applications e-Blog

Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

21.5.2022
35
Applications e-Blog

Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

19.5.2022
10
Automotive

Stackpole Presents High Current Metal Shunt Resistors

19.5.2022
16

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.