Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases Two High Current Common Mode Choke Models

    Electronics Weekly Announcing Finalists for Elektra Awards 2025

    Exxelia Exhibit at Electronica India September 17–19, 2025

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    5th PCNS Awards Outstanding Passive Component Papers

    TDK Releases Ultra-small PFC Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases Two High Current Common Mode Choke Models

    Electronics Weekly Announcing Finalists for Elektra Awards 2025

    Exxelia Exhibit at Electronica India September 17–19, 2025

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    5th PCNS Awards Outstanding Passive Component Papers

    TDK Releases Ultra-small PFC Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

High-Voltage Temperature Sensors for Connectors in e-Mobility; TDK App Note

29.12.2021
Reading Time: 3 mins read
A A

In e-mobility, the temperature of all system units needs to be constantly monitored. The high currents result in losses with a corresponding generation of heat arising, in particular, at contacts. TDK has now developed a special-purpose high-voltage resistant temperature sensor for connectors.

Today high-voltage batteries for electric vehicles (xEV) have rated voltages of up to 1000 V, necessitating all system components to be correspondingly high-voltage resistant. Currents in the three-digit bracket arise in achieving high drive power – some well over 100 kW – via inverter and motor. Together with line and contact resistances, these high currents result in substantial power dissipations and associated thermal losses since the currents are squared in the calculation: PV = I2 x R. This makes it clear that even slight resistances in the milliohm range produce relatively large losses and thus a possibly critical rise in temperature. If, for example, a contact point has a 10 mΩ resistance and is applied with a 100 A current, the result is a 100 W power dissipation which can quickly lead to overheating. That is why in xEV critical contact points – such as a connector between battery and motor inverter – must be thermally monitored and the current reduced in good time given imminent overheating. NTC-based temperature sensors which initiate current derating are suitable for monitoring the temperature at critical points. Figure 1 illustrates the control principle.

RelatedPosts

TDK Releases Ultra-small PFC Capacitors

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

High requirements placed on NTC temperature sensors for xEV

Figure 1: Control principle of a temperature monitoring unit with corresponding current derating.

E-mobility places completely different requirements on developing and designing  NTC temperature sensors, especially for their integration into high volt systems. These include:

  • High-voltage resistance
  • Brief response time
  • High-temperature stability
  • High degree of precision
  • Scope for direct integration into connectors

The challenge was finding a material with both a high electrical insulation property and, at the same time, excellent thermal conductivity and developing a design to integrate an NTC element. Furthermore, a high-temperature stability was to be provided. A special-purpose ceramic sleeve in which the sensor die is integrated proved to be suitable. Featured Image illustrates the temperature sensor developed in this way.

Innovative TDK temperature sensor meets all requirements

Multiple successful tests have proved that the newly-developed TDK temperature sensor meets the requirements placed on it. The high-voltage test produced a 5 kV DC dielectric strength of the sensor head – clearly well above the 1 kV DC system voltage. Also obtained was the required brief response time. It is particularly important for starting derating in good time given a case of sudden overheating. A τ-value (63%) of well under <10 s seconds was recorded in a typical installation situation. The permitted temperature range is -40 °C to +150 °C with brief 180 °C applications allowed.

Sensor precision is also an important aspect. Only when it is sufficiently high can derating be started not only in good time but also not too early on. At 25 °C, the new sensor has a maximum ±0.2 K deviation with the R25 resistance at 10 kΩ under a 1 percent tolerance.

The upper plastic section of the sensor is designed such that diverse customer fitting requirements, such as screw-on, clip-in or clip-on, can be implemented.

All in all, the effective electrical, thermal and mechanical values of the new sensor contribute to making electro-mobility safer and more efficient.

Related

Source: TDK

Recent Posts

Bourns Releases Two High Current Common Mode Choke Models

16.9.2025
1

SCHURTER Releases High Performance EV-Fuse

15.9.2025
4

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

5.9.2025
30

Samsung MLCCs Lineup for In-Vehicle Infotainment

4.9.2025
33
source: Samtec

Best Practices for Cable Management in High-Speed and High-Density Systems

4.9.2025
17

Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

2.9.2025
14

Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

2.9.2025
38

Bourns Releases Automotive High Creepage and Clearance Transformer

1.9.2025
31

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

29.8.2025
38

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

29.8.2025
49

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 16
20:00 - 21:00 CEST

Reduce SMT Parasitic Design Failures with Innovative Filter Topologies

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version