Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

How to Specify Capacitors for High-Energy Pulse Applications

12.12.2024
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog discusses how to specify capacitors for high-energy pulse applications.

Energy storage capacitor banks supply pulsed power in all manner of high-current applications, including shockless compression and fusion.

RelatedPosts

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Knowles Releases Inductors for Mission-Critical RF Applications

As the technology behind capacitor banks advances with more precise switching and higher energy density, fast discharge capacitors can reliably support more advanced applications.  

The energy storage capacitors selected for large banks must feature low inductance, high peak current, strong fault tolerance and excellent reliability over their lifespan.

When working to specify high energy capacitors, consider the following charge, hold and discharge profile for a capacitor in an RLC circuit (Figure 1).

Figure 1: Hold and discharge profile for a capacitor in an RLC circuit 

The following questions address crucial factors that influence capacitor performance, reliability and longevity in high-energy pulse applications. Answering them will help us ensure that you have the right capacitors for your design. 

What capacitance and voltage conditions will your high energy capacitors be subjected to? 

By definition, the energy stored in a charged capacitor is: 

where

  • C is capacitance (F)
  • V is the charging voltage (V)

There are a few real-world factors that influence the mathematical relationship here. Depending on the charging method, achievable voltage varies. Further, capacitor discharge is never 100 percent efficient. Knowles Precision Devices is prepared to discuss your energy storage goals and help you establish capacitance and charging voltage targets. 

What’s your strategy for capacitor charging? 

Considering the amount of energy at play, power supply choice is an important design parameter. Regardless of the charging mode (e.g., constant voltage, constant current, constant power or resonant charging), shorter charge time is favorable to avoid prefiring. Figure 1 shows constant current charging time as the first stage in the hold and discharge profile. 

How long do you need the capacitor to hold its charge?

The second stage in the hold and discharge profile, shown in Figure 1, is the hold time. Account for this period in your design process as excessive hold times impact overall safety and reliability.

How quickly must the capacitor bank discharge its energy into the circuit? 

Discharge time is determined by RLC circuit parameters, so share as much as you can about the circuit the capacitor bank will discharge into. 

What is the expected ringing period, if any? 

The damping of the RLC circuit your capacitor bank is discharging into may cause voltage ringing. Share if you have specific design criteria around the ringing period. 

What is the expected voltage reversal? 

The expected voltage reversal is the reverse peak voltage that occurs during the pulse discharge process of the capacitor. Reversal happens due to the parasitic inductance in the circuit, which causes energy to oscillate between the capacitance and inductance. The oscillation causes a reverse voltage and current to briefly appear across the capacitor, such that it’s measurable at each pulse. Capacitors have different rated tolerances for reverse voltage. 

What is the desired shot life? 

Shot life, expressed as a percentage of survival probability, indicates the number of charge/discharge cycles that a capacitor can endure before failure. Capacitor lifespan depends on factors like the percentage voltage reversal, ringing frequency, temperature and operating voltage. Knowles Precision Devices offers statistical analyses to understand capacitor survival rates in context. 

What is the target pulse repetition rate?

The target pulse repetition rate should be set to achieve a reasonable shot life for the capacitor. In addition to selecting materials with high dielectric strength and low loss, depending on the target rate, specialized cooling methods might be needed for heat dissipation and mechanical reinforcement. 

In addition to a thorough understanding of the specs detailed here, it’s important to consider your form factor, as it imposes additional size constraints on capacitor selection.

Related

Source: Knowles Precision Devices

Recent Posts

RF Inductors: Selection and Design Challenges for High-Frequency Circuits

10.11.2025
25

Transformer Safety IEC 61558 Standard

7.11.2025
10

ESR of Capacitors, Measurements and Applications

7.11.2025
43

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
49
Image credit: Samtec

How to Match the Right Connector with Protocol Requirements

6.11.2025
13

Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

6.11.2025
12

Capacitor Lead Times: October 2025

6.11.2025
67

Paumanok Unveils Aluminum Capacitor Foils World Markets Study 2025-2030

6.11.2025
15

Transformer Design Optimization for Power Electronics Applications

4.11.2025
23

Upcoming Events

Nov 11
17:00 - 18:00 CET

Industrial Applications Demand More from Interconnects in Next-Gen Designs

Nov 12
11:00 - 12:00 CET

PCB Design: Impedance is for everyone!

Nov 12
November 12 @ 12:00 - November 13 @ 14:15 EST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version