Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Littelfuse Releases Residual Current Monitor Series for High Current Charging Stations

24.10.2024
Reading Time: 3 mins read
A A

Littelfuse, Inc., an industrial technology manufacturing company empowering a sustainable, connected, and safer world, announced the RCMP20 residual current monitor series for high current Mode 2 and Mode 3 EV charging stations.

The RCMP20 Series sets a new standard in electric vehicle (EV) charging safety, offering superior performance and flexibility in a compact design while supporting higher charging currents than other solutions on the market. Featuring the largest current transformer (CT) aperture in the industry, this new line of products expands the Littelfuse EV infrastructure portfolio and enhances electrical safety in EV charging applications. View the video.

RelatedPosts

Littelfuse Releases Harsh Environment Robust Tactile Switches

Littelfuse Gate Driver Integrates Diode and Current Limit Resistor in Compact IC

Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

The RCMP20 Residual Current Monitor Series incorporates the following key features and benefits:

  • Largest Current Transformer Aperture: The RCMP20 Series offers the largest current sense transformer (CT) aperture available, supporting higher AC charging currents, which is critical for modern EV chargers that demand high-performance capabilities.
  • Enhanced Thermal Performance: Integrated conductors with higher cross-sectional areas provide better thermal management, reducing printed circuit board (PCB) temperature rise and allowing for a more compact design without compromising performance.
  • High EMI Resilience: The modules are designed to resist electromagnetic interference (EMI), minimizing false circuit trips and improving overall charging station reliability.
  • Flexible Mounting Options: With vertical and horizontal mounting options and 2 to 4 integrated conductors, the RCMP20 Series allows design engineers to optimize space utilization and adapt to various charger configurations.
  • Compact Design with PCB Integration: The reduced footprint within the EV chargers allows for smaller, more compact designs, while still meeting safety code requirements. The integrated PCB with optional conductors streamlines installation, reduces component count, and simplifies assembly.

The RCMP20 Series is ideal for the following applications:

  • EV Infrastructure: As electric vehicle adoption grows, robust EV infrastructure is critical. The RCMP20 Series ensures safe, efficient, and reliable charging station operation.
  • IEC Mode 2 and Mode 3 AC Charging Stations: The RCMP20 Series covers a wide range of charging needs, offering protection for both portable chargers and high-power permanent stations.
  • Ground Fault Detection: It continuously monitors for AC and DC ground fault currents, ensuring compliance with electrical safety standards and preventing shock risks.

How it works

Mode 2 and Mode 3 EV charging stations differ mainly in how they handle fault currents, particularly AC and DC currents, and the level of protection they provide against electrical hazards.

  • Mode 2 charging stations are typically used with earlier portable chargers and high-powered stations. These stations may not have built-in protection against both AC and DC fault currents, which can create safety risks. The RCMP20-03 module helps enhance safety by monitoring both AC and DC residual currents. When a ground fault, leakage, or residual current exceeds the threshold, the RCMP20-03 triggers a circuit shutdown, preventing electrical hazards. It is compliant with IEC 62752 standards for Mode 2 chargers.
  • Mode 3 charging stations are used for more permanent and higher-powered charging setups. While they often have Type A RCDs (Residual Current Devices), these devices can miss dangerous DC currents, leaving users vulnerable. The RCMP20-01 module is specifically designed to detect DC residual currents that Type A RCDs overlook. When DC fault currents exceed the threshold, it signals a trip to a connected switching device, ensuring user protection and compliance with relevant safety standards.

In summary, Mode 2 systems with the RCMP20-03 monitor AC and DC faults to enhance protection for earlier or portable charging setups. In contrast, Mode 3 systems with the RCMP20-01 focus on detecting DC faults that standard RCDs miss, improving safety for permanent charging stations.

Related

Source: Littelfuse

Recent Posts

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

1.7.2025
17

Sumida Announces New DC Common Mode Choke Coil Series

1.7.2025
10

YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

27.6.2025
33

Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

26.6.2025
18

Advancements and Applications of Switch Capacitor Power Converters

25.6.2025
34

Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

24.6.2025
25

Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

19.6.2025
29

TDK Releases Automotive Power-Over-Coax Inductor for Filters

18.6.2025
31

Bourns Introduces New Automotive Grade BMS Signal Transformer

17.6.2025
21

YAGEO Releases High-Sensitivity Residual Current Detectors for Safer EV Charging

17.6.2025
36

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version