Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Low Cost Sustainable Supercapacitors Made from Waste Cotton & Seawater

23.7.2020
Reading Time: 2 mins read
A A

Scientists at the International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), an autonomous organization of the Department of Science and Technology, Govt. of India have developed a simple, low-cost, environmentally friendly, and sustainable supercapacitor electrode derived from industrial waste cotton which can be used as an energy harvester storage device. For the first time, natural seawater is explored as an environmentally friendly, cost-effective, scalable, and alternative aqueous electrolyte, which may replace the existing aqueous-based electrolytes for the economic fabrication of supercapacitor.

In search of a cost-effective material for making affordable supercapacitor devices, scientists at ARCI have converted industrial waste cotton (Trash) into highly porous carbon fibers (Treasure) by activation process and then utilised the porous carbon fibers to make high-performance supercapacitor electrodes.

RelatedPosts

Common Mistakes in Flyback Transformer Specs

Vishay Releases Miniature SMD Trimmers for Harsh Environments

Würth Elektronik Releases Push-Button and Main Switches

The research team’s new, sustainable and green supercapacitor device shows great potential for practical application, and perhaps most importantly, the integrated solar cell with seawater-based supercapacitor as low cost, eco-friendly, efficient and self-powering device. The successful demonstration of the device revealed that solar-powered supercapacitors can not only store the electrical energy but also overcome the drawbacks of the intermittent nature of the solar irradiation. Hence, the integrated solar cell with supercapacitor can be used as an energy harvester storage device due to their long cycle life and maintenance-free power supply.

“The large-scale use of renewable energy requires creation of matching capacity for inexpensive electrical energy storage. This study provides a solution for fabrication of super-capacitors from such abundant materials as waste cotton and seawater! It is an excellent example of the creative science for the sustainable, green processes embedding principles of waste-to-wealth,” said Prof Ashutosh Sharma, Secretary, DST.

In the recent research published in Energy Technology, scientists at ARCI demonstrated the feasibility of using seawater as natural electrolyte for the fabrication of aqueous-based supercapacitor devices which shows great potential for practical implementation.

Abstract

This study demonstrates a facile, cost‐effective, green, and sustainable fabrication of supercapacitor devices using high surface area (2350 m2 g−1) activated carbon fibers as supercapacitor electrode. The electrochemical behavior of the supercapacitor electrodes with different neutral electrolytes such as LiCl, KCl, and NaCl is carefully investigated and compared with natural seawater as an economic and sustainable electrolyte for the first time. The maximum specific capacitance of carbon fibers electrode in different electrolytes is around 101 Fg−1 in LiCl, 134 Fg−1 in KCl, 159 Fg−1 in NaCl, and 172 Fg−1 in natural seawater at a current density of 1 Ag−1. Surprisingly, the seawater‐based supercapacitor exhibits a very good durability upon 10 000 charge–discharge cycles with 99% of capacitance retention and 99% of coulombic efficiency. For practical validity, integrated solar cell–based supercapacitor pouch cells are investigated. The seawater is explored as an eco‐friendly, cost‐effective, and alternative aqueous electrolyte, which may replace the existing aqueous‐based electrolytes for the fabrication of an economic and green supercapacitor device.

Related

Source: India Education Diary

Recent Posts

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
53

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
60

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
31

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
49

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
40

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
45

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
22

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
33

Researchers Presents High-Performance Carbon-Based Supercapacitors

1.8.2025
28

Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

1.8.2025
6

Upcoming Events

Aug 27
17:00 - 18:00 CEST

Capacitor Assemblies for High-Power Circuit Designs

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version