Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

    Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

    Coupled Inductors Circuit Model and Examples of its Applications

    Würth Elektronik Introduces LTspice Models for ESD Products

    Capacitor Ripple Current Testing: A Design Consideration

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

    Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

    Coupled Inductors Circuit Model and Examples of its Applications

    Würth Elektronik Introduces LTspice Models for ESD Products

    Capacitor Ripple Current Testing: A Design Consideration

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Mounting Considerations of Radial Crown SMD Aluminum Electrolytic Capacitors in Automotive Power Systems; Kemet Application Note

31.5.2021
Reading Time: 4 mins read
A A

1. A Primer on Aluminum Electrolytic Capacitors

The development of the electrolytic capacitor (e-cap) has been one of the main factors in the successful miniaturization and increased performance of many modern-day electronics. The basic e-cap construction is shown in the figure below:

Figure 1: Power Inverter with DC-Link Caps

Since capacitance is a function of surface area, aluminum foils are first etched to create a rough contour with maximal contact area, resulting in high capacitance and optimal CV-value.

RelatedPosts

Tantalum Capacitor History

Understanding the Influence of ESR and Ripple Current for the Capacitor Selection

Resonant MLCC OBC Application Guide

A second foil layer and a paper separator are added to fully complete the capacitor structure, producing an excellent terminal contact with this electrolyte. This aluminum-electrolyte-paper sandwich is then rolled or “wound” into a can and sealed with two terminals.

2. Aluminum Electrolytic Capacitors in Low Voltage Automotive Systems

2.1 DC-Link Capacitors

DC-link capacitors are used to provide a stable DC-voltage, limiting voltage fluctuations even under high ripple current loads, -fluctuations created by the inverter. The DC-link capacitors are acting as a local energy source, connected to the DC- board-net – close to the power electronics (–> low impedance).

Figure 2: Power Inverter with DC-Link Caps

Key requirements, for automotive DC-link capacitors:

  • Ripple current capability
  • Low ESR
  • High-temperature capability
  • Low thermal resistance (…especially when mounted heat-sinked to metallic chassis)
  • Operational life
  • Low impedance
  • Low inductance
  • High reliability

2.2 48V Automotive Systems and Applications

The increasing electrical power demand in modern cars is the primary cause for introducing the 48V board net. Major automotive OEMs will fully migrate to 48V mild hybrid solutions within a few years, in addition to offering plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). Reduced CO2 emissions and improved fuel consumption are the key drivers for this evolution.

Mild hybrid systems are typically designed for 10-30 kW charging power. A maximum 40kW peak output power can be confirmed on projects today, showing full compatibility with future 48V drives. This creates a need for a DC-link capacitor module, corresponding to 3-6 axial electrolytic capacitors, connected in parallel, using well-known Axial Aluminum wet technology and considering the Axial Hybrid for high power versions trend. Typically, the capacitors are heatsinked to the metallic chassis to achieve max ripple current capability.

Figure 3: A927/8 Capacitor Module

2.3 Mounting to a Heatsink

Robust mounting to the heatsink results in excellent heat transfer (low thermal resistance), lower capacitor bank temperature (extended operational life), and significantly improved ripple current capability. At the same time, excellent mechanical robustness and vibration resistance is achieved.

Figure 4: Heatsink for Capacitor Module
Figure 5: Capacitor Module Mounted on Heatsink

The application chassis (metallic) can preferably be adapted for heatsinking the module. The chassis/ heatsink can be either air-cooled or water-cooled. Thermal paste or thermal pad should be used to ensure low thermal resistance and optimal heat transfer.

3.   Electrical Characterization

The following electrical characterization was performed on a 63V 5600μF module measuring 135mm x 52mm x 31mm, part number: A928KE562Q063.

Figure 7: Impedance vs. Frequency
Figure 8: Inductance vs. Frequency
Figure 9: ESR vs. Frequency

Related

Source: Kemet

Recent Posts

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

26.5.2025
15

Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

21.5.2025
46

Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

21.5.2025
24

Coupled Inductors Circuit Model and Examples of its Applications

21.5.2025
54

Würth Elektronik Introduces LTspice Models for ESD Products

21.5.2025
44

Littelfuse Gate Driver Integrates Diode and Current Limit Resistor in Compact IC

21.5.2025
16

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
58

Coilcraft Extends Air Core RF Inductors

20.5.2025
16

Bourns Releases Automotive 1W Flyback Transformer

19.5.2025
21

Inductor Resonances and its Impact to EMI

16.5.2025
68

Upcoming Events

May 28
16:00 - 17:00 CEST

Power Over Data Line

Jun 4
11:00 - 12:00 CEST

Würth Elektronik PCB Production in Asia

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Wk 21 Electronics Supply Chain Digest

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version