Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Mounting Considerations of Radial Crown SMD Aluminum Electrolytic Capacitors in Automotive Power Systems; Kemet Application Note

31.5.2021
Reading Time: 4 mins read
A A

1. A Primer on Aluminum Electrolytic Capacitors

The development of the electrolytic capacitor (e-cap) has been one of the main factors in the successful miniaturization and increased performance of many modern-day electronics. The basic e-cap construction is shown in the figure below:

Figure 1: Power Inverter with DC-Link Caps

Since capacitance is a function of surface area, aluminum foils are first etched to create a rough contour with maximal contact area, resulting in high capacitance and optimal CV-value.

RelatedPosts

Tantalum Capacitor History

Understanding the Influence of ESR and Ripple Current for the Capacitor Selection

Resonant MLCC OBC Application Guide

A second foil layer and a paper separator are added to fully complete the capacitor structure, producing an excellent terminal contact with this electrolyte. This aluminum-electrolyte-paper sandwich is then rolled or “wound” into a can and sealed with two terminals.

2. Aluminum Electrolytic Capacitors in Low Voltage Automotive Systems

2.1 DC-Link Capacitors

DC-link capacitors are used to provide a stable DC-voltage, limiting voltage fluctuations even under high ripple current loads, -fluctuations created by the inverter. The DC-link capacitors are acting as a local energy source, connected to the DC- board-net – close to the power electronics (–> low impedance).

Figure 2: Power Inverter with DC-Link Caps

Key requirements, for automotive DC-link capacitors:

  • Ripple current capability
  • Low ESR
  • High-temperature capability
  • Low thermal resistance (…especially when mounted heat-sinked to metallic chassis)
  • Operational life
  • Low impedance
  • Low inductance
  • High reliability

2.2 48V Automotive Systems and Applications

The increasing electrical power demand in modern cars is the primary cause for introducing the 48V board net. Major automotive OEMs will fully migrate to 48V mild hybrid solutions within a few years, in addition to offering plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). Reduced CO2 emissions and improved fuel consumption are the key drivers for this evolution.

Mild hybrid systems are typically designed for 10-30 kW charging power. A maximum 40kW peak output power can be confirmed on projects today, showing full compatibility with future 48V drives. This creates a need for a DC-link capacitor module, corresponding to 3-6 axial electrolytic capacitors, connected in parallel, using well-known Axial Aluminum wet technology and considering the Axial Hybrid for high power versions trend. Typically, the capacitors are heatsinked to the metallic chassis to achieve max ripple current capability.

Figure 3: A927/8 Capacitor Module

2.3 Mounting to a Heatsink

Robust mounting to the heatsink results in excellent heat transfer (low thermal resistance), lower capacitor bank temperature (extended operational life), and significantly improved ripple current capability. At the same time, excellent mechanical robustness and vibration resistance is achieved.

Figure 4: Heatsink for Capacitor Module
Figure 5: Capacitor Module Mounted on Heatsink

The application chassis (metallic) can preferably be adapted for heatsinking the module. The chassis/ heatsink can be either air-cooled or water-cooled. Thermal paste or thermal pad should be used to ensure low thermal resistance and optimal heat transfer.

3.   Electrical Characterization

The following electrical characterization was performed on a 63V 5600μF module measuring 135mm x 52mm x 31mm, part number: A928KE562Q063.

Figure 7: Impedance vs. Frequency
Figure 8: Inductance vs. Frequency
Figure 9: ESR vs. Frequency

Related

Source: Kemet

Recent Posts

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
10

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
3

Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

19.6.2025
10

TDK Releases Automotive Power-Over-Coax Inductor for Filters

18.6.2025
6

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
14

VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

17.6.2025
9

Bourns Introduces New Automotive Grade BMS Signal Transformer

17.6.2025
7

YAGEO Releases High-Sensitivity Residual Current Detectors for Safer EV Charging

17.6.2025
9

Chinas MLCC Makers Reach 10% Market Share

16.6.2025
56

YAGEO Releases High Isolation Transformer for 1500VDC Applications

12.6.2025
23

Upcoming Events

Jun 24
16:00 - 17:00 CEST

Limitations of PSFB converters and improvements by a variable inductor ft. Sam Ben-Yaakov

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version