Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    How Metal Prices Are Driving Passive Component Price Hikes

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

    Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

    2025 Top Passive Components Blog Articles

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    How Metal Prices Are Driving Passive Component Price Hikes

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

    Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

    2025 Top Passive Components Blog Articles

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Nitrogen-Doped Porous Carbon Anode for High-Performance Potassium-Ion Hybrid Supercapacitors

7.3.2024
Reading Time: 3 mins read
A A

Researchers from University of Science and Technology, Hefei, China published new research on edge-nitrogen doped porous carbon for energy-storage potassium-ion hybrid supercapacitors in Energy Material Advances.

“The development of cost-effective and high-performance electrochemical energy storage devices is imperative,” said paper’s corresponding author Wei Chen, a professor in the School of Chemistry and Materials Science, University of Science and Technology of China (USTC). “Currently, lithium-ion batteries still dominate the market, but they are limited in both lithium as a resource and in their power densities.”

RelatedPosts

Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

Bourns SSD‑1000A AEC‑Q Digital Current Sensors

YAGEO High‑Capacitance X7R Automotive MLCC Extensions

Chen explained that potassium-ion hybrid supercapacitors (PIHCs) have several significant advantages as an alternative to lithium-ion batteries, especially to dual-carbon potassium ion hybrid capacitors (DC-PIHCs) with capacitive carbon cathode and battery-type carbon anode due to their low cost and high power/energy density.

“Currently, for battery-type carbon anodes, the slow reaction kinetics and huge volume expansion result in poor rate performance and short long-cycle lifespan, which fail to match with those of capacitive cathodes,” Chen said. “Therefore, it is significant to develop carbonaceous anodes with superior rate performance and long cycle life for DC-PIHCs.”

Various strategies have been developed for adjusting the microstructure of carbonaceous materials, such as heteroatom doping and porous structure construction to improve electrochemical performance. Nowadays, the synthesis methods of porous carbon usually adopt various templates, which increase the cost and generate a lot of byproducts.

Moreover, different types of nitrogen doping exhibited distinct roles in carbon materials. It was widely accepted that pyrrolic nitrogen and pyridinic nitrogen are electrochemically active sites in carbon materials, while graphitic nitrogen doped into the carbon lattice has no effect on K+ adsorption. Therefore, it is necessary to explore facile and economical strategies for the synthesis of high-concentration edge-nitrogen (pyrrolic nitrogen and pyridinic nitrogen) doped porous carbons.

Chen said, “In this paper, we developed a template-free strategy for preparation of high-concentration edge-nitrogen doped porous carbon (NPC) anode of DC-PHIC derived from D (+)-glucosamine hydrochloride (DGH) and carboxylated chitosan (CC), which includes two steps of hydrothermal polymerization and high-temperature carbonization. Our aim is to provide inspiration for future research in the field.”

“BET and XPS analysis demonstrated that NPC presents large specific surface area (523.2 m2/g) and exhibits high edge-nitrogen doping level of 5.19 at%, which improved K+ adsorption and intercalation capabilities,” Chen said.

Abstract

Developing facile and economical strategies to fabricate nitrogen-doped porous carbon anode is desirable for dual-carbon potassium ion hybrid supercapacitors (PIHCs). Here, a high-concentration edge-nitrogen-doped porous carbon (NPC) anode is synthesized by a template-free strategy, in which the total content of pyrrolic nitrogen and pyridinic nitrogen accounts for more than 80% of the nitrogen atoms. As a result, the NPC anode displays a capacity of 315.4 mA h g−1 at a current rate of 0.1 A g−1 and 189.1 mA h g−1 at 5 A g−1. Ex situ characterizations and density functional theory calculations demonstrate the high-concentration edge-nitrogen doping enhances K+ adsorption and electronic conductivity of carbon materials, resulting in good electrochemical performance. The assembled NPC//CMK-3 PIHC delivers an energy density of 71.1 W h kg−1 at a power density of 771.9 W kg−1 over 8,000 cycles.

Conclusion

In summary, a template-free strategy has been developed for the preparation of high-concentration edge-NPC as anode for DC-PIHC, which simplified the synthesis process and avoided wasting template materials. Brunauer–Emmett–Teller and XPS analysis demonstrated that NPC presented a large specific surface area (523.2 m2/g) and exhibited a high edge-nitrogen doping level of 5.19 at%, which improved K+ adsorption and intercalation capabilities. As a result, the NPC anode displayed a capacity of 315.4 mA h g−1 at 0.1 A g−1 and a capacity of 189.1 mA h g−1 at 5 A g−1 over 2,000 cycles. The assembled NPC//CMK-3 PIHC delivered a high energy density of 71.1 W h kg−1 with only 0.0025% capacity decay per cycle at the power density of 771.9 W kg−1 over 8,000 cycles.

Read the full paper:

Zhen Pan et al, A High-Concentration Edge-Nitrogen-Doped Porous Carbon Anode via Template Free Strategy for High-Performance Potassium-Ion Hybrid Capacitors, Energy Material Advances (2024). DOI: 10.34133/energymatadv.0080

Related

Source: Science.org

Recent Posts

Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

9.1.2026
16

YAGEO High‑Capacitance X7R Automotive MLCC Extensions

8.1.2026
36

How Metal Prices Are Driving Passive Component Price Hikes

8.1.2026
124

Modelithics COMPLETE Library v25.8 for Keysight ADS

7.1.2026
23

Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

6.1.2026
40

Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

6.1.2026
25

2025 Top Passive Components Blog Articles

5.1.2026
85
Credit: Institute of Science Tokyo

Researchers Demonstrated 30nm Ferroelectric Capacitor for Compact Memory

2.1.2026
31

Towards Green and Sustainable Supercapacitors

30.12.2025
41

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version