Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Wk 41 Electronics Supply Chain Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Wk 41 Electronics Supply Chain Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

13.10.2025
Reading Time: 4 mins read
A A

In this video presentation prof, Sam Ben-Yaakov explains principles of over voltage protection diode-based circuits such as Clamping, Snubbing, Doubling, and DC Restoration.

Introduction

This presentation provides a comprehensive overview of essential diode-based over-voltage protection circuits used in analog and power electronics.

RelatedPosts

Efficient Power Converters: Duty Cycle vs Conduction Losses

EMI Noise Mitigation in Automotive 48V Power Supply Systems

Ripple Steering in Coupled Inductors: SEPIC Case

These include clippers, clampers, snubbers, voltage doublers, DC restorers, and over-voltage clamps.

The goal is to clarify their operating principles, practical applications, and energy considerations, especially in switching environments such as flyback converters and half-bridge topologies.

Key Points

  • Clamping circuits limit voltage excursions to protect components.
  • Snubbers reduce switching losses and dampen parasitic oscillations.
  • DC restorers and voltage doublers manipulate signal baselines and amplitudes.
  • Energy balance and component sizing are critical for safe operation.

Clamping Circuits

Clamping circuits restrict the output voltage to a predefined threshold using diodes and reference voltages. A typical configuration includes a diode in series with a voltage source (e.g., Zener) and a resistor. When the input exceeds the clamping level, the diode conducts, diverting excess voltage and protecting downstream components.

The trade-off lies in resistor sizing: a low resistance allows high current, risking diode damage, while a high resistance forms a voltage divider, reducing clamping effectiveness.

ParameterEffect
Low ResistanceHigh clamping current, potential diode stress
High ResistanceVoltage division, reduced clamping precision

Snubber Circuits

Snubbers are used to mitigate voltage spikes and reduce switching losses in power transistors. When a transistor turns off, the inductor’s current charges parasitic capacitances, causing voltage overshoot. A snubber adds capacitance and resistance to slow this rise and dissipate energy.

The energy dissipated in the resistor can be estimated as:

E = CV2 2 × f

Where C is the snubber capacitance, V is the clamped voltage, and f is the switching frequency. Lossless snubbers exist but are not covered in this overview.

Over-Voltage Clamp in Half-Bridge

In half-bridge configurations, over-voltage clamps use pre-charged capacitors to absorb parasitic oscillations. When one transistor turns off, the capacitor clamps the voltage spike, then discharges through a bleeder resistor to prepare for the next cycle.

Unlike traditional snubbers, these clamps do not discharge to zero, reducing energy loss and improving efficiency.

DC Restorer and Voltage Doubler

Originally used in analog TV systems, DC restorers shift AC signals to a ground-referenced baseline. A capacitor in series with the input and a diode allows negative cycles to charge the capacitor. On positive cycles, the stored voltage adds to the input, effectively doubling the amplitude.

Assuming symmetrical input: Vout = 2×Vin

Peak Detector

Peak detectors capture the maximum amplitude of a signal using a diode-capacitor pair. The capacitor charges to the peak voltage and slowly discharges through a resistor. Time constant selection is crucial: too long and the detector lags; too short and it fails to hold the peak.

ComponentFunction
DiodeAllows charging during peak
CapacitorStores peak voltage
ResistorControls discharge rate

Conclusion

Diode-based circuits offer elegant solutions for voltage regulation, signal conditioning, and energy management. Understanding their behavior under dynamic conditions—especially in switching environments—is essential for robust design. Whether protecting components or manipulating signal baselines, these circuits remain foundational in analog and power electronics.

Related

Source: Sam Ben-Yaakov

Recent Posts

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
17

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
20

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
39

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
25

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
34

Connector PCB Design Challenges

3.10.2025
37

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
25

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
45

Experimental Evaluation of Wear Failures in SMD Inductors

1.10.2025
42

Resonant Capacitors in High-Power Resonant Circuits

1.10.2025
46

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version