Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Panasonic Commercializes Conductive Polymer Hybrid Aluminum Electrolytic Capacitors with the Industry’s Largest Ripple Current

30.11.2020
Reading Time: 4 mins read
A A

Panasonic Corporation announced today that its Industrial Solutions Company has commercialized new conductive polymer hybrid aluminum electrolytic capacitors, the large-current ZU series, and large-capacitance ZSU series for use in automotive ECUs (electronic control units) [1].

Mass production will start in December 2020. The new ZU series has achieved ripple current*1 of over 1.4 times as large as the conventional ZS series (ϕ10 x 12.5 mm and ϕ10 x 16.5 mm), supporting increases in circuit load current due to high performance automotive ECUs and contributing to smaller automotive ECUs through a reduction in the number of required capacitors.

RelatedPosts

TDK Extends SMT Gate Drive Transformers to 1000 V

Non-Linear MLCC Class II Capacitor Measurements Challenges

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

*1: As conductive polymer hybrid aluminum electrolytic capacitors of the same size as of November 10, 2020 (according to research by Panasonic)

Conductive polymer hybrid aluminum electrolytic capacitors feature low resistance and high reliability with a fusion of conductive polymer and electrolyte and are used in a wide range of applications, from control circuits in automotive engine ECUs, BMSs (battery management systems) [2], to motor drive circuits in 48 V system ISGs (integrated starter generators) [3], electric pumps, radiator fans, and further to ADAS applications (such as cameras, sensors, and control circuits). The progress in electrification and self-driving technology has led to the higher performance of automotive ECUs, which have increased circuit load currents.

The progress has also led to the implementation of redundant design [4] aiming to improve safety and reliability, resulting in use of increased number of automotive ECUs by mounting two sets of circuits in the same ECU, for example. Reducing board size is necessary for smaller mounting space, requiring cutting the number and size of capacitors by increased current and capacitance. To meet these requirements, Panasonic has commercialized the ZU series conductive polymer hybrid aluminum electrolytic capacitors with the industry’s largest ripple current by using high conductivity polymer formation technology and in-capacitor low resistance technology.

ZU series conductive polymer hybrid aluminum electrolytic capacitors features:

  1. The industry’s largest ripple current supports increases in circuit load current and saves board space.The ZU series has achieved ripple current of over 1.4 times as large as the conventional ZS series.
  2. Same capacitance value as conventional hybrid capacitors. The series has achieved large capacitance equivalent to the ZS series.
  3. Support high-temperature environments, guaranteed up to 135ºCThe series offers a guaranteed life of up to 4000 hours at 135ºC in addition to the 4000 hour, 125ºC guarantee for the conventional ZS series products.

Applications

  • Current noise reduction and voltage stabilization in motor drive circuits (DC-link capacitors)
    ・ 48 V system ISGs of mild hybrid cars
    ・ Motor drive applications mounted on xEVs (oil pumps, water pumps, electric power steering, electric compressors, etc.)
  • High output DC/DC power supply (input filter capacitors, output smoothing capacitors)

Product Features

  1. The industry’s largest currents support increases in circuit load current and save board space.The capacitors have achieved the higher conductivity of electrolytes through the use of Panasonic’s unique conductive polymer formation technology, as well as lowering resistances inside the capacitors through the recent technology of low-resistance lead wires. This has achieved ripple current of over 1.4 times as large as the conventional ZS series, enabling a reduction in the number of required capacitors, from the use of several capacitors in parallel, as well as a reduction in the size of capacitors with the same rating, thereby contributing to board area reduction and application downsizing.
  2. Same capacitance value and reliability as conventional conductive polymer hybrid aluminum electrolytic capacitors. The ZU series has achieved large capacitance equivalent to the ZS series of conventional conductive polymer hybrid aluminum electrolytic capacitors by applying the same design of large-capacity and high-reliability.
  3. Support high-temperature environments, guaranteed up to 135ºCBy further improving the heat resistance reliability of materials based on the design that enabled the 125ºC, 4000 hour guarantee for the conventional ZS series products, the ZU series has achieved the 135ºC, 4000 hour guarantee.

Panasonic also commercializes the ZSU series conductive polymer hybrid aluminum electrolytic capacitors with the industry’s largest capacitance*2

By adopting large-capacitance anode and cathode foils, the ZSU series has achieved 1.2 to 1.8 times as large capacitance value as the conventional ZS series products. Mass production will be launched in December 2020.

*2: As conductive polymer hybrid aluminum electrolytic capacitors of the same size as of November 10, 2020 (according to research by Panasonic)

Basic specifications

Term Descriptions

[1] Automotive ECU (Electronic Control Unit)
Unit for electronically controlling systems in a vehicle.
[2] BMS (Battery Management System)
System for controlling the charge/discharge of lithium-ion batteries in xEV.
[3] 48 V system ISG (Integrated Starter Generator)
Generator that also has functions as a starter mounted in mild hybrid vehicles.
[4] Redundant design
Progress in automatic driving requires safety designs. Redundant design enables normal operation to continue, even if one circuit fails, by using another circuit.

Related

Source: Panasonic

Recent Posts

TDK Extends SMT Gate Drive Transformers to 1000 V

20.8.2025
12

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
19

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
10

Stackpole Unveils Metal Element High Current Chip Jumpers

19.8.2025
17

Vishay Releases Miniature SMD Trimmers for Harsh Environments

14.8.2025
13

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
10

Stackpole Extends Voltage of High Temp Chip Resistors

13.8.2025
11

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
131

Bourns Releases High Power High Ripple Chokes

8.8.2025
34

KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

8.8.2025
15

Upcoming Events

Aug 27
17:00 - 18:00 CEST

Capacitor Assemblies for High-Power Circuit Designs

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version