Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    October 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

    Wk 43 Electronics Supply Chain Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    October 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

    Wk 43 Electronics Supply Chain Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Panasonic Low-loss Power Choke Coil for Automotive ECU

26.1.2021
Reading Time: 4 mins read
A A

Panasonic released an application note on its low-loss power inductor (choke) within the fuel-injection solenoid circuit of an ECU featuring small size, ruggedness, and specifications tailored to the high-ripple-current dc-dc converter.

New inductor from Panasonic specifically targeting automotive engine control units (ECUs), which are increasingly located closer to the engine in what is a hot, vibration-intense, and generally nasty environment. The inductor in the dc-dc converter’s injector-boost circuitry must deal with high ripple currents that are always electrically and thermally stressful and challenging for long-term performance and reliability.

RelatedPosts

NIC Components Extends SMD High Voltage MLCC Offering

Stackpole Offers RoHS Compliant Lead-Free Thick Film Chip Resistors

Smiths Interconnect’s SMD Power Resistors with Heat Sink Qualified to Space Flights

High-ripple-current ECU direct-injection boost circuit example; source: Panasonic

Performance required for injector boost coil:

  • Low-loss and high withstand voltage
  • Small size and large current
  • High vibration resistance

  • High efficiency of direct injection engine (shortening of boost recovery time)
  • ECU space saving
  • Installation of ECU in engine compartment and the integration of mechanical and electronic in-vehicle components

Features of Panasonic’s latest surface-mount automotive power chokes compared to their own predecessors:

  • Halved power loss and doubled high withstand voltage performance compared to conventional products through the use low-loss magnetic materials with high withstand voltage.
  • The downsizing and the reduced number of coils required to be incorporated into ECUs due to the improved performance contribute to ECU space saving.
  • The product eliminates the need for anti-vibration reinforcement as part of the mounting process, reducing the use of reinforcing measures with bonding agents (adhesives).

Detailed explanation of features

Halved power loss and doubled high withstand voltage performance compared to conventional products through the use low-loss magnetic materials with high withstand voltage.

Panasonic has developed new low-loss magnetic materials capable of handling large currents with a high withstand voltage based on metal composite materials using its in-house-developed metallic magnetic materials to commercialize a power choke coil with halved power loss and doubled high withstand voltage performance compared to conventional products.

These features will contribute to the improved performance and downsizing of automotive ECUs.

*Prerequisites: 13Ao-p, frequency 75kHz, Duty 35% triangular wave current
*1. When using two products in parallel Items New product

The downsizing and the reduced number of coils required to be incorporated into ECUs due to the improved performance contribute to ECU space saving.

The in-house-developed magnetic material and winding technology that forms the coil with high precision has enabled compactness and high performance, and the volume ratio has been reduced by 40% compared to the conventional product (1). And the number of components has been reduced compared to the conventional product (2). This contributes to ECU space saving.

The product eliminates the need for anti-vibration reinforcement as part of the mounting process, reducing the use of reinforcing measures with bonding agents (adhesives).

In conventional automotive ECU board mounting processes, reinforcement measures to fix components with bonding agents (adhesives) were necessary for ensuring the high vibration acceleration-resistant performance.
This product employs Panasonic’s original coil winding and forming technologies, which reduce the height of the terminal’s pull-out position down to half compared to the company’s conventional products.
Positioning closer to the mounting circuit board have achieved excellent vibration resistant performance.
This removes the need for anti-vibration reinforcement and contributes to the streamlining of the mounting process.

Example of use

Related

Source: Panasonic

Recent Posts

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
40

How to Select Ferrite Bead for Filtering in Buck Boost Converter

23.10.2025
36

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
35

Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

23.10.2025
10

Power Inductors Future: Minimal Losses and Compact Designs

22.10.2025
40

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
8

Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

22.10.2025
13

Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

21.10.2025
46

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
45

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

20.10.2025
19

Upcoming Events

Oct 30
11:00 - 12:00 CET

Space Ceramic Capacitors with Flexible Testing

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version