Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Bourns Unveils High Reliability Compact Micro Encoders

    July 2025 ECST Components Survey Continue with Strong Sales Sentiment

    SCHURTER Releases Chip Fuse for ATEX and Precision Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Bourns Unveils High Reliability Compact Micro Encoders

    July 2025 ECST Components Survey Continue with Strong Sales Sentiment

    SCHURTER Releases Chip Fuse for ATEX and Precision Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Panasonic Releases New Aluminum Hybrid Capacitors with High Ripple Current in Compact Size

6.6.2025
Reading Time: 2 mins read
A A

Panasonic Industry Europe announces the launch of its new ZVU Series Hybrid aluminum capacitors with high ripple current in compact case sizes.

Designed to meet the demands of advanced electronic systems, the ZVU Series epitomizes exceptional reliability, extended lifespan, and superior thermal management.

RelatedPosts

Panasonic Releases Enhanced Reliability Sealed Sliding Switches

Panasonic Expands Production of Hybrid Capacitors for AI

Panasonic Industry Extends OS-CON High-Voltage Aluminum Capacitors

The ZVU Series Conductive Polymer Hybrid Aluminum Electrolytic Capacitors distinguish themselves with an impressive ripple current range of 3.3Arms to 4.6Arms—up to double that of comparable case sizes from competitors.

Coupled with a reduced Equivalent Series Resistance (ESR) as low as 12mΩ, these capacitors integrate the best of electrolytic and solid polymer technologies. This synergy ensures unmatched efficiency and stability, even under extreme thermal conditions reaching up to 135°C.

Key Advantages of the ZVU Series:

  • High Ripple Current (3.3Arms to 4.6Arms): Optimally designed for robust power supply applications in automotive, industrial, and communication infrastructures.
  • Compact Design: Offering high capacitance values from 56µF to 560µF, ideal for densely populated PCB configurations.
  • Automotive-Grade Reliability: Fully compliant with AEC-Q200 standards and equipped with anti-vibration solutions, ensuring top-tier performance in critical automotive environments.
  • Sustainability: RoHS and REACH compliant

“With the introduction of the ZVU Series, Panasonic Industry Europe is reaffirming its commitment to innovation and high-performance solutions,” said Benno Kirschenhofer, Product Communications Manager at Panasonic Industry Europe. “These hybrid capacitors are developed to meet a broad spectrum of demanding applications, including in-vehicle electronics, powertrain systems, and advanced industrial equipment, where reliability and efficiency are paramount.”

Target Applications:

  • Automotive Systems
  • Power Converters and Inverters
  • Industrial Automation and Control Systems
  • Communication Infrastructure and Base Stations

Related

Source: Panasonic Industry Europe

Recent Posts

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
0

Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

6.8.2025
2

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
1

Vishay Releases High Saturation 180C Automotive Inductors

6.8.2025
2

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
3

SCHURTER Releases Chip Fuse for ATEX and Precision Applications

4.8.2025
7

SCHURTER Introduces Reliable Arc-Free Switching Technology

4.8.2025
3

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
16

Hirose Releases High Current Vibration-Resistant Connectors

4.8.2025
4

Researchers Presents High-Performance Carbon-Based Supercapacitors

1.8.2025
22

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version