Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Quantum-Mechanics Inductors Open Doors to Miniaturisation and Spin–Electronic Based Systems

8.10.2020
Reading Time: 7 mins read
A A
Emergent inductor in which the coil structure is replaced by a helical spin structure. Source: University of Tokyo

Emergent inductor in which the coil structure is replaced by a helical spin structure. Source: University of Tokyo

Published in Nature magazine, Yokouchi et al. researchers report a quantum-mechanical inductor, called an emergent inductor, that uses the electric field produced by the current-driven dynamics observed for intricate structures of magnetic moments (spins) in a magnet. Inductors are hard to miniaturize because their effectiveness is proportional to their size. An approach based on quantum mechanics could overcome this issue, offering many potential applications.

One of the fundamental components of electrical circuits is the inductor, which provides inductance (opposition to changes in electric current). Conventional inductors consist of a coil of wire wrapped around a central core. Unfortunately, because the inductance of such devices is proportional to their cross-sectional area, it is difficult to miniaturize them while keeping a reasonably high inductance. Yokouchi1 et al. report a quantum-mechanical inductor, called an emergent inductor, that uses the electric field produced by the current-driven dynamics observed for intricate structures of magnetic moments (spins) in a magnet. Notably, this device has an inductance that is inversely proportional to its area and does not require a coil or a core — characteristics that are highly desirable for practical applications.

RelatedPosts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

Bourns Releases New Current Transformer

Emergent electromagnetism refers to electromagnetism in which the generated electric and magnetic fluxes are described by a concept in quantum mechanics called a Berry phase2. Physical systems that exhibit emergent electromagnetism include magnetic systems that have non-collinear spin structures, whereby the direction of magnetization varies with the position of the spins. When electrons flow along such structures, they can become strongly coupled to the local arrangement of spins and acquire a Berry phase. This phase then acts as an effective electromagnetic field, termed an emergent field3.

For instance, an emergent magnetic field arises when electrons flow through what are known as topological non-collinear spin structures, those with a particular topology that makes them robust against small distortions or perturbations. The generated magnetic field leads to an extra signal in voltage measurements — known as Hall measurements — that is induced by a physical phenomenon called the topological Hall effect4,5. Given the complex nature of such spin structures, this voltage signal offers a convenient way to explore topological magnetic states in a wide range of materials6,7.

By contrast, an emergent electric field arises from the dynamics of non-collinear spin structures. For example, such a field is generated when a magnetic field drives the motion of domain walls8 — the boundaries between domains that have different magnetization orientations in magnetic materials. In 2019, it was shown theoretically that an emergent electric field could also be produced by the current-driven dynamics of non-collinear spin structures9. More spectacularly, it was predicted that this field would generate an inductance that is proportional to the rate of change of the current density. Because this density would be inversely proportional to the cross-sectional area of the device, the emergent inductance would increase with decreasing area, in sharp contrast to the situation in ordinary inductors (Fig. 1).

figure 1
Figure 1 | Conventional and emergent inductors. Electronic devices known as inductors resist changes in electric current — a property called inductance. a, A conventional inductor comprises a coil of wire wrapped around a central core, and has an inductance that is proportional to its cross-sectional area. b, Yokouchi et al.1 have produced an inductor, termed an emergent inductor, that uses intricate structures of magnetic moments (spins) in a magnet. A particular arrangement of spins, known as a helical spin structure, is shown here. The authors’ device has an inductance that is inversely proportional to its cross-sectional area, paving the way for miniaturized inductors that do not require a coil or a core.

Yokouchi and colleagues exploited this idea using a micrometre-scale magnet made of Gd3Ru4Al12 (Gd, gadolinium; Ru, ruthenium; Al, aluminium) that contains various non-collinear spin structures, such as helical, conical and fan-shaped structures. They selected this material because it has a weak magnetic anisotropy (directional dependence of magnetic properties), and because its spin structures have a short pitch (spatial periodicity). Spins can move relatively freely under a weak magnetic anisotropy, and the emergent inductance is inversely proportional to the pitch length9.

The authors investigated the emergent inductance of their inductor using a technique called lock-in detection. They controlled the spin-structure state of the device by altering the temperature and strength of an applied magnetic field, and carried out measurements on different states. They also varied the length, width and thickness of the device, to confirm reproducibility and exclude the possibility that the observed signal was caused by external factors, such as the presence of contact electrodes.

Most strikingly, Yokouchi et al. observed a large emergent inductance (approximately –400 nanohenries), comparable to that of a conventional inductor, for a device of about one-millionth the volume of such an inductor. By changing the spin-structure state of the device, the authors clarified the correspondence between the emergent inductance and the non-collinearity and dynamics of the spin structures. This correspondence is well explained by the previously mentioned mechanism for emergent inductance.

For example, Yokouchi and colleagues discovered that the current-driven dynamics of the helical spin structures are responsible for the large emergent inductance. By contrast, the fan-shaped structures yield a much lower inductance because their local angular variations are much smaller than are those of the other structures. Moreover, the authors found that the sign of the emergent inductance can be switched between positive and negative by controlling the direction of spin-structure motion, also in striking contrast to ordinary inductors.

Yokouchi and colleagues’ work is important for several reasons. First, it offers a scalable approach for developing miniaturized high-inductance inductors, which could be used in many micro- or nanoscale electronic devices and integrated circuits. Such inductors would also be much simpler in design than are conventional inductors, because a coil and a core would not be needed. Second, the work opens up exciting opportunities for constructing highly efficient hybrid spin–electronic circuits and systems. And third, it serves as proof that a fundamental concept in quantum mechanics — a Berry phase — can lead to real-world applications.

However, practical uses of such emergent inductors will need further breakthroughs. One major challenge is to develop inductors that act at room temperature, rather than at the current temperatures of about 10 kelvin. Overcoming this limitation will require extensive exploration of potential materials, especially to find a magnet in which short-pitch non-collinear spin structures can be readily stabilized and manipulated at room temperature. Developing a scheme for adding these inductors to integrated circuits will also be essential for applications. Nevertheless, Yokouchi et al. have made a key discovery that could lead to future engineering efforts in electronic devices, circuits and systems, while establishing an inspiring bridge between the world of quantum mechanics and modern electronics.

Nature 586, 202-203 (2020) doi: 10.1038/d41586-020-02721-7

References

  1. 1.Yokouchi, T. et al. Nature 586, 232–236 (2020).
    • Article
    • Google Scholar
  2. 2.Berry, M. V. Proc. R. Soc. Lond. A 392, 45–57 (1984).
    • Article
    • Google Scholar
  3. 3.Xiao, D., Chang, M.-C. & Niu, Q. Rev. Mod. Phys. 82, 1959–2007 (2010).
    • Article
    • Google Scholar
  4. 4.Neubauer, A. et al. Phys. Rev. Lett. 102, 186602 (2009).
    • PubMed
    • Article
    • Google Scholar
  5. 5.Schulz, T. et al. Nature Phys. 8, 301–304 (2012).
    • Article
    • Google Scholar
  6. 6.Vistoli, L. et al. Nature Phys. 15, 67–72 (2019).
    • Article
    • Google Scholar
  7. 7.Kurumaji, T. et al. Science 365, 914–918 (2019).
    • PubMed
    • Article
    • Google Scholar
  8. 8.Yang, S. A. et al. Phys. Rev. Lett. 102, 067201 (2009).
    • PubMed
    • Article
    • Google Scholar
  9. 9.Nagaosa, N. Jpn. J. Appl. Phys. 58, 120909 (2019).
    • Article
    • Google Scholar

Related

Source: Nature

Recent Posts

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

29.5.2025
7

Bourns Releases New Current Transformer

29.5.2025
10

Bourns Releases New Shielded Power Inductors for DDR5

29.5.2025
20

Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

21.5.2025
27

Coupled Inductors Circuit Model and Examples of its Applications

21.5.2025
74

Würth Elektronik Introduces LTspice Models for ESD Products

21.5.2025
45

Littelfuse Gate Driver Integrates Diode and Current Limit Resistor in Compact IC

21.5.2025
21

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
66

TDK Releases 0201 High-Frequency Smallest Inductors

20.5.2025
34

Coilcraft Extends Air Core RF Inductors

20.5.2025
17

Upcoming Events

Jun 4
11:00 - 12:00 CEST

Würth Elektronik PCB Production in Asia

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Filter Q Factor Explained

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version