Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

    Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Murata and QuantumScape Joint Development for Solid Batteries Ceramic Separators

    YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

    Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Murata and QuantumScape Joint Development for Solid Batteries Ceramic Separators

    YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Developed Neodymium Reduced High Performance Magnets

25.4.2022
Reading Time: 3 mins read
A A

KIMS Korea Institute of Materials Science research team developed rare-earth-reduced permanent magnet that can achieve the commercial magnet (grade 42) level of performance while reducing the amount of neodymium (Nd), expensive rare earth, by about 30%.

A research team led by Dr. Lee Jeong Gu and Dr. Kim Tae Hun of the Department of Magnetic Materials in the Powder Materials Division at the Korea Institute of Materials Science, a government-funded research institute under the Ministry of Science and ICT, succeeded in developing rare-earth-reduced permanent magnet. The technology has a significant value as it achieved the commercial magnet-level of performance, which is currently used in the industry, even though it reduces the amount of high-priced rare earth.

RelatedPosts

Bourns Releases High Inductance Common Mode Choke

Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

Neodymium (Nd) is expensive and unstably supplied, but it has been inevitably used, as it is essential for manufacturing rare earth permanent magnets. In order to develop a neodymium (Nd) reduced permanent magnet, the content of cerium (Ce), an inexpensive element, has to be increased, instead of reducing the content of neodymium (Nd). Until now, with the increased content of cerium (Ce), it was not able to prevent the deterioration of the magnetic properties. The research team focused on clarifying the cause and mechanism of the deterioration of the magnetic properties caused by the increased cerium (Ce) content, and they successfully solve the problem of rare-earth-reduced permanent magnets by controlling atomic-scale microstructure.

The researchers discovered that unnecessary magnetic particles were formed in the existing manufacturing process, which are the cause of the deterioration of the magnet’s microstructure and magnetic properties. They improved the microstructure of magnets and enhance magnetic properties to prevent the formation of unnecessary magnetic particles by suppressing their atomic diffusion of them.

The research team applied the melt-spinning method and the hot-deformation method, which have very fast cooling velocity compared to the conventional process, to the manufacturing process of rare-earth-reduced precursors and permanent magnets, respectively. As a result, they succeeded in optimizing the microstructure of the magnet by suppressing the formation of unnecessary magnetic particles. In addition, they were able to simultaneously improve the residual magnetism and coercive force, which are the main properties of permanent magnets. As the residual magnetism and coercive force are in a trade-off relationship, the technology that improves both main properties is very useful and valuable.

The domestic market of the rare earth permanent magnets for high-efficiency motors is worth 186 billion won per year in 2021, but Korea depends on imports of the material. In the context of China’s weaponization of rare earth, Japan’s export restrictions on materials, and global carbon neutrality, localization of rare earth permanent magnet material is a must for Korea. When this technology is commercialized, it can be used in high value-added industries such as electric vehicles, drones, flying cars, and electric ships that require high-efficiency motors.

Dr. Kim Tae-hoon, a senior researcher at KIMS, who led the research team, said, “When the technology is commercialized, it will simultaneously solve the resource problems and material, parts, and equipment issues of the domestic rare earth permanent magnet material market. This is only the beginning. With further research in the future, we will spare no effort to lead the development of the domestic rare earth permanent magnet industry.”

This research was supported by the material technology development project of magnetic powder with performance modified composite magnetic structure, a fundamental research project of KIMS and funded by the Ministry of Science and ICT. In addition, on March 17th, the research outcome was published in Scripta Materialia, one of the world’s top 5 academic journals in the field of metal materials (The first author, Gayoung Kim, Ph.D. student, Title: High-performance Ce-substituted) (Nd0.7Ce0.3)-Fe-B hot-deformed magnets fabricated from amorphous melt-spun powders).

Related

Source: KIMS

Recent Posts

Bourns Releases High Inductance Common Mode Choke

16.10.2025
1

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
8

Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

15.10.2025
8

YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

13.10.2025
116

YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

9.10.2025
23

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
32

Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

8.10.2025
14

Experimental Evaluation of Wear Failures in SMD Inductors

1.10.2025
43
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
22

Development of Nitrogen-Doped Graphene Supercapacitors 

30.9.2025
16

Upcoming Events

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version