Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Graphene-Based BOSC Bank Of Supercapacitor Cells

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Graphene-Based BOSC Bank Of Supercapacitor Cells

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Resistors Noise and Corrosion

2.5.2025
Reading Time: 6 mins read
A A

In many applications reliability, stability and long lifetime of resistors are of critical importance. Lets learn something about resistors’ noise and corrosion.

Noise

Definition

Noise manifests itself as a spontaneously fluctuating voltage whose instantaneous amplitude is randomly distributed. The instantaneous value is both unpredictable and of minor interest except in certain critical applications. Instead, one measures a time-averaged value. It consists of the root of the mean-square value of voltage transmitted in a particular frequency pass band.

RelatedPosts

Sulphur-Resistant Film Resistors

Designing with High Voltage Resistors: 10 Top Tips for Success

Overcoming the Challenges of Using Sub-Milliohm SMD Current Sense Chip Resistors

The noise consists of two components:

  1. Thermal noise
  2. Current noise.

Thermal Noise

Thermally agitated charges in the resistance track cause a randomly varying voltage that is called thermal noise. It may be described as the root mean square voltage, E, according to the formula

This image has an empty alt attribute; its file name is EQ-R1_11.jpg
resistor thermal noise equation [1]

,where:

  • k is Boltzmann’s constant 1.38 x 10-23 Ws/K
  • T is the absolute temperature in Kelvin (K)
  • R is the resistance value in ohms
  • Δf is the band width of the detector system in Hz.

From this formula we see that the thermal noise is independent of what kind of resistor type (style) we use.

Current Noise

If we record a DC current through an electrical conductor we would at a sufficiently high amplification be able to see small randomly occurring ripples on the “surface”. They manifest themselves as an increase in mean-square voltage over that caused by thermal noise. The contribution is called current noise or often only noise. It appears above all in materials whose resistance is produced by means of joints between conductive particles embedded in an isolator compound. It is suggestive of the coal granules in the early carbon microphones. In the contact spots current area and conductivity are changed greatly which in turn generates current noise. But also in pure metals in wires and films current noise is generated, although values are negligible in most cases.

The current noise is approximately direct proportional to applied voltage and inversely proportional to frequency (Figure R1-14).

Figure 1. Examples of resistor current noise in carbon composition resistors.

Above 10 kHz it usually can be neglected. It grows with the width of the pass band over which it is integrated. It means that the pass band 100…..1000 Hz approximately has the same contents of noise that the pass band 1…..10 kHz. Or in general, every frequency decade has approximately the same noise contents. Suppose the noise contents in a particular defined frequency decade is 1 mV/V. Then the noise for 100 Hz…..10 kHz would be √(12+12) = √2 ≈ 1.4μV/V.

Since current noise above 10 kHz is often negligible earlier measurements covered the frequency range 200 to 10 kHz.

According to IEC 195, DIN 44 049, part 1 and MIL-STD-202, method 308, one takes the typical noise characteristic of a frequency decade as one’s starting-point and measures a so called current-noise index expressed either in mV/V or in dB, per frequency decade. One measures geometrically around 1000 Hz, which gives the frequency decade 618 to 1618 Hz. If vrms is the number of mV current noise in an open circuit and VT the applied DC voltage we obtain:

This image has an empty alt attribute; its file name is EQ-R1_12.jpg
current noise index equation [2]

In Figure 2. we show examples of accounts of noise curves for two different resistor materials. Note how the noise grows with resistance value.

Current noise can be of great importance in the following cases:

  1. High resistance value.
  2. High DC voltage applied.
  3. Low level circuits and high amplification.
  4. Low or no negative feed back.
  5. Acoustic frequency range.
  6. Linear circuit functions.
Figure 2. Examples of typical resistor current noise versus resistance in two different resistor materials.

Aqueous Electrical Corrosion / Electrolysis

Resistance is in principle based on slender conduction paths that are thinner the higher the resistance is. As shown in Figure 3. high ohmic resistors become in that way extremely sensitive to electrolytic corrosion.

Corrosion in its turn implies the presence of moisture. Encapsulation and tight encasing will be decisive in providing environmental resistance of the component. Moreover, if the resistor is loaded with a DC voltage the corrosion velocity increases with voltage until internal heating dries the points of attack.

Many people may experience water electrolyzation in science emperic during the school days. Insert platinum electrode into water where electrolyte is included and turn electricity so oxgen evolves from the anode and hydrogen from the cathode. Similar phenomenon happens inside of a resistor. If you continue to use resistor of which the coating inside has been infiltrated by air containing moisture or water, resistive body turns into ion and melt out instead of generating oxygen at the anode side. Resistive body disappears finally leading to disconnection.

This phenomenon is called electric corrosion because the resistive body seems to be erroded by electricity whereas the disconnection caused by electric corrosion is called disconnection by electric corrosion. The higher the resistance is, the more electric corrosion is likely to happen. This is because the resistive body with high resistance has thin film and narrow pattern, which is easier for the resistive body to be melted in short time. Eletric corrosion occurs mainly for carbon film or metal film type resistors. To avoid this, wash the resistor after soldering to remove the electrolyte as well as seal the resistor excluding moisture. If there should be no characteristic problem, you can replace it by metal glaze film resistors which can hardly turn into ion.

Figure 3. Schematic of resistor corrosion attacks on low and high resistance elements
Figure 4. illustration of resistor electrical corrosion; source: KOA

Related

Recent Posts

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
38

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
52

Shielding Cabinets

29.4.2025
16

Magnetic Shielding and Magnetic Shielding Sheets

29.4.2025
25

Characterization of 70GHz Thin Film Chip Resistors

26.4.2025
51

Corrosion its Development and Prevention

26.4.2025
24

Housing EMC Requirements, Issues and Solutions

26.4.2025
39

Stackpole Expands 3 Watt Current Sense Resistor with 0.2 mOhm Value

25.4.2025
7

Hybrid Electrochemical Electrolytic Capacitor Provides High Frequency and High Capacitance Performance

25.4.2025
44

Vishay Releases Thick Film Power Resistor With Optional NTC Thermistor

23.4.2025
26

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Tariffs Crush Sales Sentiment in April 2025 ECST Results

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version