Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Wk 25 Electronics Supply Chain Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Wk 25 Electronics Supply Chain Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

ROHM Introduces New Nano Cap™ Power Supply Technology Significantly Reduces Needs for Capacitance

25.6.2020
Reading Time: 4 mins read
A A

ROHM announces the development of Nano Cap™ power supply technology that ensures stable control of power supply circuits in the automotive and industrial fields – even with ultra-small capacitances in the magnitude of nF (Nano: 10-9).

The growing awareness for sustainable energy consumption has led to greater electrification in a variety of applications. Especially in the automotive field, the number of electrical components continues to increase due to technological innovations spurred by advances in EVs and autonomous driving. Each of these electrical applications requires a variety of voltage sources, all of them stabilized by capacitors. This results in an increasing demand of external components, increasing PCB sizes and adding cost to the Bill of Material.

RelatedPosts

Stackpole Releases Low VCR High Voltage Chip Resistors

June 2025 Interconnect, Passives and Electromechanical Components Market Insights

Wk 25 Electronics Supply Chain Digest

Following the development of ultra high-speed pulse control technology Nano Pulse Control™ and ultra-low current technology Nano Energy™, ROHM has added a third Nano power supply technology, Nano Cap™, that reduces the number of external capacitors required for linear regulators.

In a circuit, typically comprised of a linear regulator and MCU, a 1uF capacitor is usually required at the output of the linear regulator while 100nF is requested at the input of the MCU. However, leveraging ROHM’s linear regulator utilizing Nano Cap™ technology – developed by combining analog expertise covering circuit design, layout, and processes – eliminates the need for the capacitor at the regulator output and ensures stable operation with just the 100nF input capacitor. By decreasing both the number of capacitors along with the capacitance needed for power supply circuits in the automotive and other fields, ROHM can contribute to minimizing circuit design load.

Furthermore, Op amp samples utilizing Nano Cap™ technology have already been released in part, and linear regulators utilizing Nano Cap™ technology as well as LED drivers that built-in Nano Cap™ equipped regulators are scheduled to be released in 2020.

ROHM is committed to further enhancing the development of Nano CapTM technology to completely eliminate the need for capacitors while expanding the use of this technology not only to linear regulators, but Op amps, LED drivers, and other analog ICs as well, which contribute to society through the effective use of resources that minimizes environmental load.

About Nano Cap™ Technology

Nano Cap™ power supply technology refers to ultra-stable control technology achieved by combining advanced analog expertise covering circuit design, processes, and layout utilizing ROHM’s vertically integrated production system. Optimized control eliminates the problem of operational stability regarding capacitors in analog circuits, contributing to a reduction in design time for a wide range of applications in the automotive, industrial equipment, consumer, and other fields.

Details of Nano Cap™ Technology

Nano Cap provides stable control of linear regulator output by improving response in analog circuits while minimizing parasitic factors related to wiring and amplifiers, making it possible to reduce the output capacitance to less than 1/10th over conventional solutions.

Nano Cap™ Acheives Ultra-Stable Control

As a result, circuits composed of a linear regulator and MCU which usually require a 1uF capacitor at the output of the linear regulator and a 100nF at the input of the MCU as mentioned above, ROHM’s Nano Cap™ linear regulator technology achieve stable operation using just one 100nF capacitor at the MCU side.

Given an industry requirement for output voltage fluctuation of ±5.0% max. (in case focusing on just fluctuation) with respect to 50mA load current fluctuation with 100nF capacitance, Nano Cap™ equipped chips achieve a stable operation of ±3.6% in the evaluations, compared with conventional linear regulators whose output voltage can vary by as much as ±15.6%.

Other Nano Power Supply Technologies

ROHM established Nano power supply technologies by incorporating proprietary analog expertise that combines circuit design, processes, and layout utilizing a vertically integrated production system. The following are other Nano power supply technologies centered on power supply ICs developed by ROHM that contribute to solving application issues in a wide range of products.

Nano Pulse Control™
Refers to ROHM’s ultra-high-speed pulse control technology for power supply ICs that achieves a switching ON time (control width of the power supply IC) on the order of nanoseconds (ns), making it possible to convert from high to low voltages using a single IC – unlike conventional solutions requiring 2 or more power supply ICs. This contributes to greater miniaturization and system simplification in 48V applications ranging from mild hybrid vehicles and industrial robots to base station sub power supplies.

Nano Energy™
This ultra-low current technology features a no-load current consumption in the nA range by minimizing the trade-off that occurs when reducing current consumption at ultra-light loads. As a result, 10-year drive on a single coin battery demanded by the IoT market is possible, supporting long-term operation in compact battery-driven applications, including portable devices, wearables, and IoT.

Related

Recent Posts

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
29

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
11

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
19

VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

17.6.2025
20

Chinas MLCC Makers Reach 10% Market Share

16.6.2025
77

Smoltek CNF-MIM Capacitor Commercialization Update

11.6.2025
31

Understanding Switched Capacitor Converters

9.6.2025
79

DigiKey Offers Zephyr Operating System Workshop and Training Videos

6.6.2025
17

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
36

Knowles Extends Range and Performance of C0G MLCC Capacitors

6.6.2025
28

Upcoming Events

Jun 24
16:00 - 17:00 CEST

Limitations of PSFB converters and improvements by a variable inductor ft. Sam Ben-Yaakov

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version