Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Samsung Delivers Silicon Capacitors to Marwell AI Systems

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Wk 25 Electronics Supply Chain Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Samsung Delivers Silicon Capacitors to Marwell AI Systems

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Wk 25 Electronics Supply Chain Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

SLC or MLCC Ceramic Capacitor: When it Fits Better ?

10.2.2022
Reading Time: 3 mins read
A A
The illustration on the left shows how an SLC is built while the illustration on the right shows the many layers of an MLCC. source: Knowles Precision Devices

The illustration on the left shows how an SLC is built while the illustration on the right shows the many layers of an MLCC. source: Knowles Precision Devices

SLCs vs. MLCCs – when such ceramic capacitor construction type fits better to my application? Knowledge Precision Devices blog posted by Victor Lu highlights specific benefits of these individual types.

At a high-level, these capacitor types seem similar as both SLCs and MLCCs can be used for charging and storing, filtering, or bypass functions in a circuit. To determine which one is the best fit for your application, let’s first look at the basic structure of each capacitor type. SLCs are the most basic capacitor type available since these capacitors consist of a single layer of dielectric material, or insulating layer, sandwiched between a positive and a negative electrode.

RelatedPosts

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

Knowles Extends Range and Performance of C0G MLCC Capacitors

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

An MLCC uses the basic principle of this capacitor design to build multiple layers in the same capacitor, resulting in a single capacitor that provides a capacitance level that is equivalent to using multiple SLCs connected in parallel. This multi-layer design in slightly thicker (taller) than an SLC but decreases the overall footprint needed for a capacitor to achieve higher capacitance – a critical concern for many RF and microwave applications today as size, weight, and power (SWaP) are driving many design decisions. Featured image illustrates the construction of an SLC versus an MLCC.

When an SLC May Be the Best Fit

SLC’s are specifically designed for use in microwave and RF applications. This is because the inherent self-resonant frequency (SRF), which is the point where the capacitor will exhibit the least amount of impedance, of an SLC is the highest of any discrete lumped constant capacitor. Capacitors with a high SRF have low equivalent series resistance (ESR), which is the internal resistance in the capacitor that appears in series with the capacitance of the device.

This is important because, in general, ESR increases as frequency increases, so using a capacitor that has inherently low ESR is necessary. Additionally, since SLCs are formed monolithically, the number of mechanical parts in the SLC is limited, which also contributes to a lower ESR value.

One potential drawback of SLCs is that since it is just a single layer of material, capacitance is heavily dependent on the dielectric constant of the dielectric used, which limits the capacitance that can be achieved. Therefore, SLCs are mainly ideal for high-frequency, low-capacitance applications.

When an MLCC May Be the Best Fit

In general, MLCC’s can be used in a variety of applications since these capacitors have a much higher capacitance range than that of SLCs. This is possible because MLCCs are made with multiple layers of dielectric and conductors. In addition to offering higher capacitance, this design means MLCCs can be used for much higher voltage applications, up to 12 kV for some of our designs. However, since multiple layers of electrodes and dielectric are used, the ESR of an MLCC is usually much higher than that of an SLC. As a result, MLCC’s, even those made with high Q (ultra-low loss) Class 1 dielectrics, can only handle frequencies up to 30 GHz because of the high ESR values relative to SLCs, while SLCs can handle frequencies up to 100 GHz.

When it comes to RF and microwave applications, MLCCs are ideal for applications that require higher capacitance levels and higher operating voltages. However, when looking at applications beyond the RF and microwave industry, MLCCs, especially those taking advantage of a variety of our MLCC innovations, can be used for some of the world’s most demanding applications, including medical implantables, electric vehicles, and high-reliability detonation devices. 

As shown in this post, the uses cases for SLCs and MLCCs are not interchangeable since each capacitor type handles variables such as voltage, frequency, and capacitance differently. In general, SLCs are well-suited for high-frequency, low-voltage RF and microwave applications, while MLCCs can be used for all types of high-capacitance, high-voltage applications within a much more limited frequency range. 

Related

Source: Knowles Precision Devices Blog

Recent Posts

Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

24.6.2025
4

Samsung Delivers Silicon Capacitors to Marwell AI Systems

24.6.2025
10

Smoltek CNF-MIM Capacitor Commercialization Update

11.6.2025
33

Understanding Switched Capacitor Converters

9.6.2025
80

What Track Width To Use When Routing PCB

6.6.2025
34

Capacitance Definition of Non-Linear Voltage Dependent Capacitors

5.6.2025
34

Coupled Inductors Circuit Model and Examples of its Applications

21.5.2025
143

Würth Elektronik Introduces LTspice Models for ESD Products

21.5.2025
71

Littelfuse Gate Driver Integrates Diode and Current Limit Resistor in Compact IC

21.5.2025
30

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
104

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version