Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

    Vishay Releases Fast Acting Thin Film Chip Fuses

    Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    SCHURTER APO Pyrofuse Brings Active Safety for High-Voltage Systems

    Coilcraft Releases Worlds Smallest 0402 Ferrite-Core Wirewound Chip Inductor

    Panasonic Releases Compact Tactile Switch with 3N Operation Force and 500K Cycles Life

    Modelithics Unveils Qorvo GaN Library v25.5.9

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

    Vishay Releases Fast Acting Thin Film Chip Fuses

    Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    SCHURTER APO Pyrofuse Brings Active Safety for High-Voltage Systems

    Coilcraft Releases Worlds Smallest 0402 Ferrite-Core Wirewound Chip Inductor

    Panasonic Releases Compact Tactile Switch with 3N Operation Force and 500K Cycles Life

    Modelithics Unveils Qorvo GaN Library v25.5.9

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Solar-powered supercapacitors could create flexible, wearable electronics

15.2.2019
Reading Time: 2 mins read
A A

Source: University of Glasgow news

A breakthrough in energy storage technology could bring a new generation of flexible electronic devices to life, including solar-powered prosthetics for amputees. In a new paper published in the journal Advanced Science, a team of engineers from the University of Glasgow discuss how they have used layers of graphene and polyurethane to create a flexible supercapacitor which can generate power from the sun and store excess energy for later use.

RelatedPosts

Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

Vishay Releases Fast Acting Thin Film Chip Fuses

Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

They demonstrate the effectiveness of their new material by powering a series of devices, including a string of 84 power-hungry LEDs and the high-torque motors in a prosthetic hand, allowing it to grasp a series of objects.

The research towards energy autonomous e-skin and wearables is the latest development from the University of Glasgow’s Bendable Electronics and Sensing Technologies (BEST) research group, led by Professor Ravinder Dahiya.

The top touch sensitive layer developed by the BEST group researchers is made from graphene, a highly flexible, transparent ‘super-material’ form of carbon layers just one atom thick.

Sunlight which passes through the top layer of graphene is used to generate power via a layer of flexible photovoltaic cells below. Any surplus power is stored in a newly-developed supercapacitor, made from a graphite-polyurethane composite.

The team worked to develop a ratio of graphite to polyurethane which provides a relatively large, electroactive surface area where power-generating chemical reactions can take place, creating an energy-dense flexible supercapacitor which can be charged and discharged very quickly.

Similar supercapacitors developed previously have delivered voltages of one volt or less, making single supercapacitors largely unsuited for powering many electronic devices. The team’s new supercapacitor can deliver 2.5 volts, making it more suited for many common applications.

In laboratory tests, the supercapacitor has been powered, discharged and powered again 15,000 times with no significant loss in its ability to store the power it generates.

Professor Ravinder Dahiya, Professor of Electronics and Nanoengineering at the University of Glasgow’s School of Engineering, who led this research said: “This is the latest development in a string of successes we’ve had in creating flexible, graphene based devices which are capable of powering themselves from sunlight.

“Our previous generation of flexible e-skin needed around 20 nanowatts per square centimetre for its operation, which is so low that we were getting surplus energy even with the lowest-quality photovoltaic cells on the market.

“We were keen to see what we could do to capture that extra energy and store it for use at a later time, but we weren’t satisfied with current types of energy storages devices such as batteries to do the job, as they are often heavy, non-flexible, prone to getting hot, and slow to charge.

“Our new flexible supercapacitor, which is made from inexpensive materials, takes us some distance towards our ultimate goal of creating entirely self-sufficient flexible, solar-powered devices which can store the power they generate.

“There’s huge potential for devices such as prosthetics, wearable health monitors, and electric vehicles which incorporate this technology, and we’re keen to continue refining and improving the breakthroughs we’ve made already in this field.”

The team’s paper, titled ‘Graphene-Graphite Polyurethane Composites based High-Energy Density Flexible Supercapacitors’, is published in Advanced Science. The research was funded by the Engineering and Physical Sciences Research Council (EPSRC).

Related

Recent Posts

Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

17.12.2025
19

Jianghai Offers Custom Bottom Cooled Screw Aluminum Capacitors

17.12.2025
26

TDK Unveils Vibration-Resistant Hybrid Polymer Aluminum Capacitors

15.12.2025
19

Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

10.12.2025
26

YAGEO Launches Hybrid Polymer Radial Capacitor for High-Reliability Automotive and Power Applications

10.12.2025
29

Digital Twin of a Tantalum Capacitor Anode: From Powder to Formation

8.12.2025
59

November 2025 Interconnect, Passives and Electromechanical Components Market Insights

4.12.2025
94

Skeleton Opens €220M Supercapacitor Leipzig Factory

3.12.2025
26

TAIYO YUDEN Extends Polymer Hybrid Aluminum Capacitors with Higher Ripple Current and Lower Profile

3.12.2025
35

Upcoming Events

Dec 19
12:00 - 14:00 EST

External Visual Inspection per MIL-STD-883 TM 2009

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version