Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Tantalum Capacitors Support Nvidia to Shrink AI ‘Supercomputer’ to Credit Card Size

9.11.2019
Reading Time: 3 mins read
A A

by: EPCI blog

NVIDIA today introduced Jetson Xavier™ NX, the world’s smallest, most powerful AI supercomputer for robotic and embedded computing devices at the edge. What grabbed my attention looking at the board are six tantalum capacitors on the board that enables such miniaturization. 

RelatedPosts

Overvoltage and Transient Protection for DC/DC Power Modules

Choosing the Right Capacitor: The Importance of Accurate Measurements

Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

Nvidia Jetson Xavier “AI Supercomputer” features

With a compact form factor smaller than the size of a credit card, the energy-efficient Jetson Xavier NX module delivers server-class performance up to 21 TOPS for running modern AI workloads, and consumes as little as 10 watts of power.

Jetson Xavier NX opens the door for embedded edge computing devices that demand increased performance but are constrained by size, weight, power budgets or cost. These include small commercial robots, drones, intelligent high-resolution sensors for factory logistics and production lines, optical inspection, network video recorders, portable medical devices and other industrial IoT systems.

“AI has become the enabling technology for modern robotics and embedded devices that will transform industries,” said Deepu Talla, vice president and general manager of Edge Computing at NVIDIA. “Many of these devices, based on small form factors and lower power, were constrained from adding more AI features. Jetson Xavier NX lets our customers and partners dramatically increase AI capabilities without increasing the size or power consumption of the device.”

Ecosystem Support
Jetson Xavier NX is receiving strong support from the robotics and embedded devices ecosystem.

“NVIDIA’s embedded Jetson products have been accelerating the research, development and deployment of embedded AI solutions on Lockheed Martin’s platforms,” said Lee Ritholtz, director and chief architect of Applied Artificial Intelligence at Lockheed Martin. “With Jetson Xavier NX’s exceptional performance, small form factor and low power, we will be able to do more processing in real time at the edge than ever before.”

“Our goal is to dramatically increase the quality and accuracy of our optical inspection system and accelerate our move towards industry 4.0,” said Otsuka Hiroshi, CEO of Musashi Seimitsu. “NVIDIA Jetson Xavier NX gives us the compute capabilities to improve our visual inspection capabilities without increasing the size and power of our optical inspection system.”

Nvidia Jetson Xavier NX module with six tantalum capacitors on the board; modified from source: Nvidia

Tantalum Capacitors Challenges

Last month I was presenting “Tantalum Capacitors Future” at T.I.C. 60th General Assembly in Hong Kong and the news on the Nvidia compact AI supercomputer with tantalum capacitors on board nicely fit and complete the picture.

We have seen some decrease of global tantalum capacitor market and there were some doubts about the technology future, nevertheless there are some three strong pillars for tantalum capacitors based on their features:

  1. High stability of its parameters
  2. Long-term reliability
  3. High energy and power density

While high volume consumer market is trying to replace tantalum capacitors due to the higher cost there are still number of applications where use of tantalum capacitors presents key competitive advantage within consumer-industrial applications (such as high energy compact capacitors in SSDs and industrial computers) and high reliability and defense sector.

There were two web articles that grab my attention this morning as puzzle piece to complete the picture. The first release from Nvidia on “industrial” supercomputer above and also nice overview of defense industry technology innovation from Jabil blog discussion role of defense in driving the technology innovation.  The blog mentions four technology innovations impacting the defense industry:

  1. Augmented and Virtual Reality
  2. Big Data and the Internet of Things
  3. Artificial Intelligence
  4. Additive Manufacturing

The Jabil blog goes nicely with the Nvidia press release citing Lockheed Martin’s acknowledgement for the AI supercomputer development … and at the end is a good message for tantalum capacitor industry.

Related

Recent Posts

Choosing the Right Capacitor: The Importance of Accurate Measurements

12.11.2025
37

Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

12.11.2025
6

Skeleton Opens SuperBattery Factory in Finland 

12.11.2025
13

Murata Expands High Rel NTC Thermistors in Compact 0603M Size

12.11.2025
7

ESR of Capacitors, Measurements and Applications

7.11.2025
94

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
74

YAGEO Unveils Compact 2.4 GHz SMD Antenna

6.11.2025
13

KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

6.11.2025
14

Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

6.11.2025
17

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version