Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

    Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

    Coupled Inductors Circuit Model and Examples of its Applications

    Würth Elektronik Introduces LTspice Models for ESD Products

    Capacitor Ripple Current Testing: A Design Consideration

    TDK Releases 0201 High-Frequency Smallest Inductors

    Coilcraft Extends Air Core RF Inductors

    Bourns Releases Automotive 1W Flyback Transformer

    Wk 20 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

    Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

    Coupled Inductors Circuit Model and Examples of its Applications

    Würth Elektronik Introduces LTspice Models for ESD Products

    Capacitor Ripple Current Testing: A Design Consideration

    TDK Releases 0201 High-Frequency Smallest Inductors

    Coilcraft Extends Air Core RF Inductors

    Bourns Releases Automotive 1W Flyback Transformer

    Wk 20 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK Builds New Factory in Japan to Strengthen the Passive Components Business

20.3.2022
Reading Time: 3 mins read
A A

TDK has decided to build new factory in Japan with the target to strengthen the development and volume production of groundbreaking electronic components by harnessing its core competences of magnetic material technology and plating technology. The new site will enable TDK to accelerate its customer service and launch new products quicker to the market.

TDK Corporation announces that it has decided to build “the Inakura Factory West Site” in Nikaho City, Akita Prefecture, Japan. The new factory will be a new production facility for electronic components. Construction of the first phase will begin in April 2022. 

RelatedPosts

TDK Releases 0201 High-Frequency Smallest Inductors

TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

TDK Releases 750A High-Power 1500V Contactor

Thanks to two historic changes, Digital transformation (DX), utilizing IoT, AI and other technologies; and Energy transformation (EX), including through the expanded use of renewable energy, the importance of electronic components and devices is reaching unprecedented heights. TDK will accelerate its efforts in DX and EX, by keeping its sights not only on its customers but on the end consumer as it strives to offer technology that can contribute to a better future of everyone. With evolving electronics equipment and applications, demand for electronics components is increasing globally, and there is a growing need for electronic components manufacturers to respond to this trend in a timely manner. 

In addition, the factory plans to operate its electricity needs with 100% renewable energy. TDK’s electronic components business has been aggressive in introducing renewable energy, such as the use of geothermal power generation in Iceland. The new factory will also be an eco-friendly facility that incorporates an energy management system that brings together TDK’s power generation and storage technologies. It will also help reduce CO2 emissions. 

TDK will also respond to the labor shortage that have confronted the domestic manufacturing industry in Japan in recent years and build a futuristic factory that also achieves labor saving in production processes. 

The construction of this factory is TDKs first step to continue to bolster its production capabilities for electronic components in line with the corporate growth strategy in the Akita/Shonai area, centered on the existing TDK Electronics Factories (Yurihonjo City, Akita Prefecture). Moreover, sustainable initiatives are underway in the prefecture, such as a town development project as part of regional revitalization and an offshore wind power generation project. TDK will actively participate in these initiatives to revitalize the entire Akita/Shonai area.

Overview of the new factory

TDK Inakura Factory West Site Phase 1 Construction (tentative name) 

1. Construction site: 4-3 Tateishi, Kisakatamachi, Nikaho City, Akita Prefecture
2. Total floor area: Approx. 13,000 m2 (total site area: approx. 36,000 m2)
3. Building structure: 2 stories
4. Main businesses: Development and manufacture of newly developed plating process application products (non-contact power supply coil module, NFC coil, etc.)
5. Construction start date: April 2022 (plan)
6. Completion date: April 2023 (plan)
7. Mass production start date: September 2023 (plan)

Related

Source: TDK

Recent Posts

Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

21.5.2025
12

Coupled Inductors Circuit Model and Examples of its Applications

21.5.2025
18

TDK Releases 0201 High-Frequency Smallest Inductors

20.5.2025
17

Coilcraft Extends Air Core RF Inductors

20.5.2025
9

Bourns Releases Automotive 1W Flyback Transformer

19.5.2025
14

Inductor Resonances and its Impact to EMI

16.5.2025
48

Würth Elektronik Releases High Performance TLVR Coupled Inductors

15.5.2025
33

Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

14.5.2025
48

TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

14.5.2025
19

How to design a 60W Flyback Transformer

12.5.2025
42

Upcoming Events

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Capacitor Ripple Current Testing: A Design Consideration

    0 shares
    Share 0 Tweet 0
  • Inductor Resonances and its Impact to EMI

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Capacitor Losses (ESR, IMP, DF, Q), Series or Parallel Eq. Circuit ?

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version