Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK Introduces High Permeability Ultra-Thin Magnetic Shielding Sheets for NFC Applications

17.5.2023
Reading Time: 3 mins read
A A

TDK Corporationextends its Flexield family of magnetic shielding shielding materials with the introduction of the IFQ06, offering high permeability (μ’) and low magnetic loss (μ”) designed for near-field communications (NFC) applications.

The IFQ06 material provides highly effective protection against performance-reducing design features that can complicate NFC designs, such as metal objects directly behind the antenna.

RelatedPosts

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

TDK Presents Various Large-Size Ferrite Cores for Industrial Applications

With the evolution of ever smaller and more multifunctional electronic devices, it is increasingly difficult to keep advanced functionalities from interfering with each other. NFC communication uses electromagnetic induction where the antenna receiving a carrier wave from a reader/writer allows the on-board IC chip to perform signal processing.

Metal objects, in particular, can absorb or disturb the magnetic flux lines of the generated H field, creating eddy currents which reduce effective range. These disturbances can also shift the inductance value and self-resonance frequency, reducing performance because of tuning issues between the two antennas. In some cases, metal close to the antenna will carry an induced current that produces a countering magnetic field, shortening the communication distance and making communication impossible.

By placing the newly released IFQ06 series material between the antenna coil and any metal surface, the magnetic flux is confined within the magnetic shield that is generated by the reader/writer. As a result, the generation of an induced current on the metal surface is eliminated and optimum 13.56 MHz communication conditions can be maintained.

Other benefits of the IFQ06 series include:

  • Shaping/directing the magnetic H field
  • Influencing the quality factor (Q) of the inductive antenna
  • Increasing the coupling factor (K) between the two antennas
  • Helping set the inductance value (Ls) for resonant tuning
  • Completing the magnetic field path
  • Improving security by encapsulating the magnetic field and its respective information

TDK’s IFQ06 flexible magnetic sheet materials are offered in a choice of three formats: roll or sheet materials ideal for prototyping, lower volumes or where large areas need to be covered; and custom cut parts to exactly match design requirements for higher volume or automated assembly options.

Features

  • Highly flexible magnetic material that facilitates easy forming to desired sizes and shapes
  • Available in multiple standard thicknesses: 0.050 mm, 0.100 mm, and 0.200 mm
  • Additional thicknesses of 0.065 mm and 0.075 mm available upon request
  • High permeability for thin film (µ’: 56), low magnetic loss (µ”: ~ 2) and good Q [µ’/µ”: 28] at 13.56 MHz
  • High surface resistivity of >10 MOhm allowing for direct contact to metal antennas
  • Available with an optional high temperature resin [IFQ06S] that supports applications up to +125 °C
  • Available on a roll, in sheet format, or customized to customer’s specific needs

Related

Source: TDK

Recent Posts

YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

30.7.2025
5

KYOCERA AVX Releases New 3dB Hybrid Couplers

1.7.2025
22

Quantic Eulex Presents Ceramic Gap RF Capacitors

12.6.2025
34

Modelithics Releases Components Library v25.0 for Keysight 

12.5.2025
24

Murata Releases 008004 High-Frequency SMD Chip Inductor

12.5.2025
57

KYOCERA AVX Releases Compact High-Directivity Couplers

7.5.2025
36

W-band Self-Biased Circulators for Next Gen VHTS Satellites

1.5.2025
12

CAD-to-FAB Capability to Produce Planar RF Passive Structures

29.4.2025
21

Highly Integrated W-Band Circulators Based on SIW Technology

28.4.2025
17

Characterization of 70GHz Thin Film Chip Resistors

26.4.2025
69

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version