Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Resonant Capacitors in High-Power Resonant Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Resonant Capacitors in High-Power Resonant Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK ThermoFuse varistors: Compact overvoltage protection with an integrated fuse

24.4.2020
Reading Time: 2 mins read
A A

Source: TDK news

TDK Corporation (TSE:6762) has extended its EPCOS ThermoFuse™ family of fuse protected varistors with the new compact NT14 and NT20 series. The new ThermoFuse components feature a footprint that fits into existing circuit board layouts.

RelatedPosts

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

Electrolyte Selection and Performance in Supercapacitors

Connector PCB Design Challenges

The NT14 series (disk diameter 14 mm) is designed to absorb maximum surge currents with an 8/20-μs pulse of 6 kA at rated voltages of between 130 VRMS and 680 VRMS, while the NT20 series (disk diameter 20 mm) has a surge current capability with an 8/20-μs pulse of 10 kA at rated voltages of between 130 VRMS and 750 VRMS. The NT14 and NT20 series offer a maximum energy absorption of up to 220 J and 480 J for 2 ms, respectively. Both series are available in 2-leaded and 3-leaded types, with the third lead used to monitor whether the fuse has been activated.

ThermoFuse varistors are uniquely designed disk varistors that are connected in series with a thermally coupled fuse and are therefore intrinsically safe. If the varistor overheats, the patented thermal fuse trips and isolates the varistor from the grid with unrivalled dependability. This prevents any potential damage on the PCB or to components located near the varistor and increases the reliability of the equipment to be protected. Thanks to their thermal resistance and flame-retardant design of the epoxy coating, the ThermoFuse NT series meet UL 94 V-0 requirements, and are also listed as Type 4CA in UL 1449, 4th edition

With their compact dimensions and excellent surge current capability over a broad range of voltages, the NT types are suitable for use in a wide range of applications, such as ballasts for lighting, home appliances, power supplies, inverters for solar installations, frequency converters for drives, and smart meters. They can also be used for the general protection of electrical wiring and installations

Main applications

  • Ballasts for lighting, home appliances, power supplies, inverters for solar installations, frequency converters for drives, smart meters
  • General protection of electrical wiring and installations

Main features and benefits

  • Compact size
  • Wide range of voltages from 130 VRMS to 750 VRMS
  • High surge current capability of up to 10 kA
  • UL 1449 listed

Key data 

Series Ordering
code
Disk
diameter
[mm]
Operating
voltage
[VRMS]
Surge current
capability
[kA]
Max. energy
absorption
[J]
NT14, 2 leads B72214R* 14 130 to 680 6 50 to 220
NT14, 3 leads B72214W* 14 130 to 680 6 50 to 220
NT20, 2 leads B72220R* 20 130 to 750 10 100 to 480
NT20, 3 leads B72220W* 20 130 to 750 10 100 to 480

 

Related

Recent Posts

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
15

Stackpole Offers High Voltage Plate Resistors up to 40KV

2.10.2025
12

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
20

Experimental Evaluation of Wear Failures in SMD Inductors

1.10.2025
24

Resonant Capacitors in High-Power Resonant Circuits

1.10.2025
21

Littelfuse Releases First Reflow-Compatible Illuminated Tactile Switch

1.10.2025
4

Vishay Unveils 5W Power Metal Strip Resistor in Compact 1206 Case Size

1.10.2025
16

Components Thermal and Frequency Challenges in 6G Base Stations

30.9.2025
12

Layer-by-Layer Fabrication of Thin Polypropylene-based Dielectrics

30.9.2025
22

Reliability of E-Textile Conductive Paths and Passive Component Interfaces

29.9.2025
22

Upcoming Events

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version