Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK’s Thin EDLC for IC Smart Cards

7.10.2016
Reading Time: 3 mins read
A A

source: TDK article

TDK has been offering pouch-type EDLCs, and has developed a new ultra-thin EDLC, with a thickness of 0.45mm (max.) that can be stored inside an IC card. It realizes battery-less smart cards equipped with a display, and is suitable for secondary power supplies for wearable devices or IoT devices.

RelatedPosts

Advances in the Environmental Performance of Polymer Capacitors

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

EDLC of TDK often used for assisting power supplies for LED flash, etc.
TDK offers small pouch-type EDLCs by applying the production technology for lithium ion batteries. TDK’s EDLC is thin, large-capacity and low-impedance, and is often used for assisting power supplies for LED flashes and other devices. EDLCs are attracting attention as a secondary power supplies for wearable devices or IoT devices, and further reduction in their thickness is demanded. To meet these needs, TDK has developed a new EDLC featuring a thickness of only 0.45mm (max.), which is one of the thinnest EDLCs in the industry (Figure 1).

Figure 1 Newly-developed thin EDLC (EDLC041720-050-2F-13)
Realizes next-generation battery-less smart cards
IC cards incorporating IC chips are used for various applications as replacements for conventional magnetic cards. Recently, next-generation smart cards with electronic paper displays or operation buttons, featuring high convenience and security, have appeared.

In a non-contact IC card system using Near Field Communication (NFC), information on the IC chip is rewritten by transmitting the energy simultaneously with signals, using the electromagnetic wave at a frequency of 13.56MHz sent from the reader/writer. However, as several seconds are required for electronic paper displays to be rewritten, the IC cards must be held over the reader/writer for a while. Although the next-generation smart cards are equipped with a primary or secondary battery to keep convenience, there are some worries with these batteries, such as the length of the battery life or the need for a lengthy charging time. TDK’s new thin EDLC provides a solution for these concerns, which rapidly stores the energy required for rewriting the display while the card is being held over the reader/writer.

The size of an IC card is 85.60mm on the longer side, 53.98mm on the shorter side, and 0.76mm thick determined by the international standard ISO/IEC7810. The newly developed EDLC with a thickness of 0.45mm makes it possible to incorporate the EDLC into an IC card, realizing a battery-less next-generation smart card (Figure 2).

Figure 2 Example of the configuration of a next-generation battery-less smart card
IC cards are required to have bending or torsional resistance. In a test using a sample incorporating TDK’s thin EDLC, the functions were not damaged even after repeating dynamic bending with a maximum flexure amount of 20mm in the long direction and 10mm in the short direction 250 times for the front and back sides respectively, for a total of 1,000 times. In addition, the functions were not lost even after repeating a dynamic torsion of 15±1° 1,000 times, which sufficiently cleared the durability test under the ISO/IEC standard required for IC cards.

Effective for wearable devices or IoT devices
The advantages of TDK’s thin EDLC include that it is a highly safe power storage device compared to lithium ion batteries or other devices. Even if an object such as a nail penetrates it when it is fully charged, it does not cause ignition or fumes. Therefore, it is suitable for healthcare devices used on the human body or wearable devices. In addition, it also features an excellent temperature characteristic, being able to operate under a broad temperature range from -20°C to +60°C. Owing to this temperature characteristic, the EDLC can support various applications, including secondary batteries for IoT devices used outdoors or storage devices in energy harvesting devices.

Wireless Sensor Networks (WSN) consisting of a large number of sensors will become the core of the near-future IoT society. However, power supplies for transmitting sensor information using radio waves have been a bottleneck for the spread of WSN. The combination of energy harvesting and EDLC provides a very effective solution that can realize battery-less sensor devices.

Part No. Nominal
Capacitance
(mF) typ.
Nominal
Impedance
[AC 1kHz]
(Ω) typ.
Operating Voltage
(continuous)
(V)
Peak
(V)
EDLC041720-050-2F-13 5 7 3.2 5.0

Related

Recent Posts

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
7

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
4

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
10

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
3

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
20

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
16

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
24

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
41

Qualification of Commercial Supercapacitors for Space Applications

1.10.2025
38

Resonant Capacitors in High-Power Resonant Circuits

1.10.2025
38

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version