Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Graphene-Based BOSC Bank Of Supercapacitor Cells

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Graphene-Based BOSC Bank Of Supercapacitor Cells

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

What are Safety Capacitors and its Benefits

25.4.2025
Reading Time: 5 mins read
A A

This article based on Knowles Precision Devices blog elaborates on importance of safety capacitors and its benefits especially in power electronic applications.

Safety capacitors are designed to mitigate the effects of transient voltages and interference in electrical and electronic circuits, especially high-voltage applications, ensuring their safe operation.

RelatedPosts

RF Inductors Key Characteristics and Applications

Stacked Ceramic Capacitors Improve Efficiency in Power and RF Applications

Capacitors in Pulse Forming Network

Even everyday devices need safety capacitors: modems and other telecoms equipment, AC-DC power supplies, power distribution switchgear, and electric vehicles (EVs) and other automotive applications.

The Role of the Safety Capacitor

In a circuit, safety capacitors used on AC lines filter high-frequency electromagnetic interference (EMI), or undesirable electromagnetic emissions or disturbances generated either by electronic devices or natural sources in the environment that can interfere with the proper functioning of other nearby devices or systems. This is known as EMI filtering, with the filter providing a safe path for noise while maintaining electrical isolation and safety.

When placed in combination with a series of inductors or resistors, safety capacitors form low-pass filters that attenuate the high-frequency signals (EMI) and allow the lower-frequency power signals to pass. This is the classic EMI filter setup—attenuating unwanted noise above a cutoff frequency. As more electronic devices enter the market, EMI filtering becomes even more crucial as there is an increased likelihood that EMI could cause a device to malfunction, crash, or fail.

In power electronics specifically, EMI filters take the form of power line filters that protect the line from upstream noise. While this list may differ depending on system requirements, the core components of a power line filter include:  

  • A common-mode filter circuit with two or more line-to-chassis capacitors and a common-mode inductor
  • A differential mode (DM) filter circuit with at least one pair of series inductors and one line-to-line capacitor
  • Compensation networks to adjust the filter’s quality (Q) factor and adapt the output impedance as needed
  • Transient voltage suppression device(s) to defend against surges

Figure 1. shows an EMI filter structure that could be useful for single-phase AC applications or for DC power inputs.

Figure 1: EMI filter structure designed for single-phase AC applications or DC power inputs 

Where Safety Capacitors are Used

To ensure safe operations and compliance with electrical safety standards, you’ll find safety capacitors in nearly every electronic device developed today – from industrial motor drives and HVAC systems to consumer appliances to medical devices, telecommunications equipment, and automotive electronics. For many of these applications, safety capacitors are crucial components that ensure user safety and reliable performance.

Classes of Safety Capacitors

In general, there are two classes of capacitors, Class-X and Class-Y, that are both used to minimize EMI in different applications.

  • X Capacitors: Class-X capacitors, also known as “across-the-line capacitors,” are used between the wires carrying the incoming AC current. These offer line-to-line protection, which means that if there is a failure, a short may occur, but there is no risk of shock. An X capacitor failure usually causes a fuse or circuit breaker to open.
  • Y Capacitors: Class-Y capacitors, also known as “line-to-ground capacitors” or “line bypass capacitors,” offer line-to-ground protection, which generally means that if a failure with the ground occurs, there is a risk for shock. However, Class-Y safety capacitors must meet rigorous specifications, minimizing the chance of electric shock.
  • X/Y Capacitors: Some safety capacitors handily combine classes, for example, X1/Y2. This simply means that the capacitor can be used as an X1 capacitor in an across-the-line application or as a Y2 capacitor in the line-to-ground portion of the circuit.  
Figure 2. A representation of where Class X and Class Y safety capacitors are placed and the associated risks.

Choosing a Safety Capacitor – Ceramic or Film?

Two common types that can fit the role of safety capacitors are multilayer ceramic capacitors (MLCCs) and plastic film capacitors. Each has its benefits depending on the specific application. Some characteristics to consider when choosing between capacitors include the following:

  • Temperature range
  • Size constraints
  • Voltage rating
  • Capacitance value
  • Certification standards (like X and Y ratings for line-to-line and line-to-ground applications)
  • Cost

Film Capacitors

Film capacitors can withstand a wide temperature range and often have higher capacitance value. Film capacitors also offer self-healing, which enables the device to recover from a dielectric breakdown with only a small reduction in capacitance. However, film capacitors are large in size relative to their capacitance. They are also often more expensive and used in voltage/capacity ranges that cannot be covered by ceramic capacitors.

Multilayer Ceramic Capacitors

MLCCs can achieve higher capacitance values in a smaller volume than film capacitors. They are usually better for low-power applications. For example, MLCCs are well-suited for space-sensitive applications like antenna coupling. They are also available with special terminations to accommodate automotive technology with applications like onboard chargers, inverters, DC/DC converters, and other equipment in EVs.

And while film capacitors have an impressive temperature range, MLCCs can also withstand high temperatures, high voltage, and high power. Additionally, Knowles Precision Devices MLCCs are available with a FlexiCap™ termination. FlexiCap™ is a proprietary flexible epoxy polymer termination material that is applied to the device under the usual nickel barrier finish to accommodate a greater degree of board bending than conventional capacitors, reducing the risk of mechanical cracking.

Related

Source: Knowles Precision Devices

Recent Posts

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
28

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
38

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
27

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
19

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
12

Hybrid Energy Storage System for Nanosatellite Applications

1.5.2025
9

COTS-Plus Bulk Tantalum Capacitor for LEO Flight Platforms

29.4.2025
36

Shielding Cabinets

29.4.2025
16

Magnetic Shielding and Magnetic Shielding Sheets

29.4.2025
25

High Energy Density Supercapacitors for Space Applications

28.4.2025
34

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Coefficient of Linear Thermal Expansion on Polymers Explained

    0 shares
    Share 0 Tweet 0
  • Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version