Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

    Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

    Vishay Expands Automotive High Frequency Thin Film Chip Resistors

    Advancements and Applications of Switch Capacitor Power Converters

    KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Samsung Delivers Silicon Capacitors to Marwell AI Systems

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

    Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

    Vishay Expands Automotive High Frequency Thin Film Chip Resistors

    Advancements and Applications of Switch Capacitor Power Converters

    KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Samsung Delivers Silicon Capacitors to Marwell AI Systems

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

The world’s tiniest temperature sensor is powered by radio waves

11.12.2015
Reading Time: 2 mins read
A A
wireless batterijloze thermometer van PhD Hao Gao, vakgroep Mixed Signal Microelectronics, EE TU/e

wireless batterijloze thermometer van PhD Hao Gao, vakgroep Mixed Signal Microelectronics, EE TU/e

source: Eindhoven University article

Researchers at Eindhoven University of Technology (TU/e) have developed a very tiny wireless temperature sensor that is powered in a very special way: from the radio waves that are part of the sensor’s wireless network. This means that the sensor needs not even a single wire, nor a battery that would have to be replaced. The arrival of such sensors is an important development on route towards smart buildings, for instance. But the applications are many and various.

RelatedPosts

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

Vishay Expands Automotive High Frequency Thin Film Chip Resistors

The smart buildings of the future will be full of sensors that will respond to the residents’ every need, and will be as sustainable as possible. Like heating and lighting that only switches on when someone is in the room. That’s only possible if these sensors are wireless and need no batteries, otherwise in a large building you would have to change the batteries every day. This is demonstrated by TU/e researcher Hao Gao who was awarded his PhD on Monday 7 December for his thesis in which he developed a sensor that measures just 2 square millimeters and weights a mere 1.6 milligrams, equivalent to a grain of sand.

The current version of the sensor has a range of 2.5 centimeters; the researchers expect to extend this to a meter within a year, and ultimately to 5 meters. The sensor has a specially developed router, with an antenna that sends radio waves to the sensors to power them. Since this energy transfer is accurately targeted at the sensor, the router consumes very little electricity. And the sensors themselves are made such that their energy consumption is extremely low. The sensor also operates beneath a layer of paint, plaster or concrete. As Peter Baltus, TU/e professor of wireless technology, explains, this makes the sensor easy to incorporate in buildings, for instance by ‘painting’ it onto the wall with the latex.

The sensor contains an antenna that captures the energy from the router. The sensor stores that energy and, once there is enough, the sensor switches on, measures the temperature and sends a signal to the router. This signal has a slightly distinctive frequency, depending on the temperature measured. The router can deduce the temperature from this distinctive frequency.

The same technology enables other wireless sensors to be made, for example to measure movement, light and humidity. The application areas are enormous, Baltus says, ranging from payment systems and wireless identification to smart buildings and industrial production systems. They won’t be expensive either: mass production will keep the cost of a sensor down to around 20 cents. The sensor is based on 65-nm CMOS technology.

The project, called PREMISS, has received funding from the STW technology foundation. The title of Hao Gao’s thesis is ‘Fully Integrated Ultra-Low Power mm-Wave Wireless Sensor Design Methods’. The integrated circuits research was done in the Mixed-Signal Microelectronics group and also involved the TU/e groups Electromagnetics and Signal Processing Systems as well as the Center of Wireless Technology.

Source and top image: Eindhoven University of Technology

Recent Posts

Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

26.6.2025
4

Vishay Expands Automotive High Frequency Thin Film Chip Resistors

26.6.2025
4

KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

25.6.2025
8

Stackpole Releases Low VCR High Voltage Chip Resistors

23.6.2025
7

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

19.6.2025
17

Optimization of IoT for GEO NB-NTN Hybrid Connectivity

19.6.2025
13

TDK Releases Automotive Power-Over-Coax Inductor for Filters

18.6.2025
20

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
28

VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

17.6.2025
23

YAGEO Releases High Isolation Transformer for 1500VDC Applications

12.6.2025
26

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version