Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Expands its MagI³C-VDMM MicroModules

    Guerrilla RF Sponsors Modelithics Models for GaN Power Transistor Line

    Exxelia Presents Smart Integrated Magnetics Solution at Space Tech Expo 2025 

    Littelfuse Releases Load-Powered Compact Relay

    Murata Expands High Cutoff Frequency Chip Common Mode Chokes

    Transformer Design Optimization for Power Electronics Applications

    Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

    Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

    Lightweight Model for MLCC Appearance Defect Detection

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Expands its MagI³C-VDMM MicroModules

    Guerrilla RF Sponsors Modelithics Models for GaN Power Transistor Line

    Exxelia Presents Smart Integrated Magnetics Solution at Space Tech Expo 2025 

    Littelfuse Releases Load-Powered Compact Relay

    Murata Expands High Cutoff Frequency Chip Common Mode Chokes

    Transformer Design Optimization for Power Electronics Applications

    Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

    Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

    Lightweight Model for MLCC Appearance Defect Detection

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Understanding Switched Capacitor Converters

9.6.2025
Reading Time: 4 mins read
A A

In this video prof. Sam Ben-Yaakov discusses regulated switched capacitors in converters, its efficiency, stress and voltage regulation

Switched capacitor converters (SCCs) are integral in modern electronics, offering compact solutions for voltage conversion without relying on inductors. This article delves into their basic configurations, efficiency challenges, stress factors, and mechanisms for voltage regulation.

RelatedPosts

Capacitor Self-balancing in a Flying-Capacitor Buck Converter

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

Efficient Power Converters: Duty Cycle vs Conduction Losses

Basic Configurations of Switched Capacitor Converters

A fundamental SCC, often illustrated with schematics from Texas Instruments and Analog Devices, operates using MOSFET switches and flying capacitors:

  1. Inverting Converter (Texas Instruments Model):
    • Design: Four MOSFET switches connect the input through to a flying capacitor, then to the output.
    • Operation: In one phase, the capacitor connects to the input, storing charge. In the next phase, it connects to the output, releasing charge. The output voltage is negative relative to the grounded positive terminal, effectively inverting the input.
  2. Voltage Doublers/Dividers (Analog Devices Model):
    • Design: Configures capacitors in either series or parallel arrangements.
    • Operation: Depending on the input/output definition, the output can be double or half the input voltage.

Efficiency Challenges in SCCs

Efficiency in SCCs is influenced by internal losses due to:

  • Resistive Elements: MOSFET on-resistance and Equivalent Series Resistance (ESR) of capacitors contribute to power dissipation.
  • Load Conditions: At low currents, voltage drops are minimal, but as load increases, internal resistance causes significant drops.
  • Switching Frequency and Capacitor Size: Higher frequencies and larger capacitors reduce equivalent internal resistance, enhancing efficiency.

Voltage Stress and Regulation Techniques

Stress Factors:

  • Switch Stress: MOSFETs endure voltage swings that depend on the switching cycle.
  • Capacitor Stress: Capacitors face charge/discharge cycles leading to thermal and electrical stress.

Regulation Methods:

  1. Adjusting Switching Frequency: Changing the frequency alters the internal resistance, thereby regulating the output voltage.
  2. Control of MOSFET Resistance: Varying gate drive levels modifies MOSFET conduction resistance, affecting output voltage.
  3. Hybrid Solutions: Incorporating Low Dropout Regulators (LDOs) in series with SCCs for fine-tuning output voltages.

Simulation Insights and Practical Considerations

Simulations confirm theoretical models:

  • Load Impact: Higher load resistances reduce output current, minimizing voltage drops and improving efficiency.
  • Parasitic Inductances: Influence current waveforms, necessitating careful PCB layout to reduce oscillatory behavior.

Conclusion

Switched capacitor converters offer compact, efficient solutions for voltage conversion. While their efficiency can rival that of LDOs under certain conditions, understanding and mitigating internal losses and stress factors are crucial for optimal performance. By leveraging advanced control techniques and meticulous design, engineers can harness SCCs for a wide range of power management applications.

Related

Source: Sam Ben-Yaakov

Recent Posts

Transformer Design Optimization for Power Electronics Applications

4.11.2025
7

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

3.11.2025
15

Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

3.11.2025
15

Lightweight Model for MLCC Appearance Defect Detection

3.11.2025
15

DMASS Reports First Positive Signs of European Distribution Market in Q3/25

3.11.2025
7

TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

3.11.2025
8

Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

30.10.2025
15

Capacitor Self-balancing in a Flying-Capacitor Buck Converter

30.10.2025
33

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
37

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
33

Upcoming Events

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

Nov 6
14:30 - 16:00 CET

Self-healing polymer materials for the next generation of high-temperature power capacitors

Nov 11
17:00 - 18:00 CET

Industrial Applications Demand More from Interconnects in Next-Gen Designs

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version