Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    2025 Annual Capacitor Technology Dossier

    Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    2025 Annual Capacitor Technology Dossier

    Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Vishay Intertechnology Implements Restructuring Actions

25.9.2024
Reading Time: 2 mins read
A A

Vishay Intertechnology, Inc., one of the world’s largest manufacturers of discrete semiconductors and passive components, announced that it is implementing restructuring actions designed to optimize the Company’s manufacturing footprint and streamline business decision-making as it executes its Vishay 3.0 growth strategy.

The restructuring actions will be implemented in phases and include:

RelatedPosts

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

Vishay Releases Fast Acting Thin Film Chip Fuses

  • Selling, general, and administrative functions will be streamlined beginning immediately and through 4Q 2025, resulting in severance payments to approximately 170 employees, or 6% of the SG&A workforce.
  • The closure of three manufacturing facilities. A Diodes segment back-end facility in Shanghai, China is expected to be closed by the end of 2026 with production transfers completed in phases beginning 4Q 2025. In addition, two small facilities in the Resistors segment in Fichtelberg, Germany, and in Milwaukee, Wisconsin, are expected to be closed in 2026. As a result of these facility closures, Vishay will reduce its direct labor by approximately 365 employees, or 2% of its total manufacturing labor workforce.
  • Various changes in manufacturing operations and production transfers, which will result in severance payments to approximately 260 employees.

The Company expects to incur pre-tax cash charges of approximately $38 to $42 million, primarily related to severance costs, as a result of these programs, mostly in 3Q 2024. Once the program is fully implemented by the end of 2026, Vishay expects to realize annualized cost savings of at least $23 million of which approximately $12 million is expected to be in selling, general and administration expenses. The Company expects to realize immediate annualized cost savings of approximately $9 million. Beginning 1Q 2025, the Company expects to realize approximately $12 million in annualized cost savings.  

“As we implement Vishay 3.0, reshaping the Company and preparing for our next phase of growth, we continuously task ourselves with identifying opportunities to best foster a business minded approach to decision making, further enhance our customer first focus and improve cost efficiencies,” said Joel Smejkal, Vishay’s President and Chief Executive Officer. “With that in mind, we are undertaking these restructuring actions in part to eliminate barriers to execution and to intensify the sense of urgency. We’re also taking our first step to optimize our global manufacturing footprint, closing smaller single product line facilities and moving toward campus manufacturing structures with multiple product lines. Collectively, these actions will help us execute our five-year growth strategy to accelerate our revenue growth rate, expand profitability and drive higher returns.”

The Company’s estimates of the costs related to its cost reduction programs and anticipated annual savings represent its current best estimates.  However, such estimates are preliminary and subject to change as the Company implements these programs.

Related

Source: Vishay

Recent Posts

2025 Annual Capacitor Technology Dossier

23.1.2026
26

January 2026 Interconnect, Passives and Electromechanical Components Market Insights

22.1.2026
88

Passive Components in Quantum Computing

22.1.2026
74

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

20.1.2026
109

YAGEO Acquires 100% of Shares of Shibaura Electronics

19.1.2026
89

Würth Elektronik Introduces Product Navigator for Passive Components

14.1.2026
79

How Metal Prices Are Driving Passive Component Price Hikes

8.1.2026
396

2025 Top Passive Components Blog Articles

5.1.2026
128

Littelfuse Completes Acquisition of Basler Electric

12.12.2025
50

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version