• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

What Are DC-Blocking Capacitors, and Why Are They Important?

14.7.2023

September 23 – Interconnect, Passives & Electromechanical Components Market Insights

3.10.2023

Choosing the Right Noise Filters for Automotive Networks

3.10.2023

Ceramic Capacitors Supporting DC Link Filters

3.10.2023

KYOCERA AVX is Acquiring Bliley Technologies, A Global Leader in Low-Noise Frequency Control Products

3.10.2023

Resonant MLCC OBC Application Guide

2.10.2023

Bourns Releases New Compact Size High Current Ferrite Beads

2.10.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    September 23 – Interconnect, Passives & Electromechanical Components Market Insights

    Choosing the Right Noise Filters for Automotive Networks

    Ceramic Capacitors Supporting DC Link Filters

    KYOCERA AVX is Acquiring Bliley Technologies, A Global Leader in Low-Noise Frequency Control Products

    Resonant MLCC OBC Application Guide

    Bourns Releases New Compact Size High Current Ferrite Beads

    Skeleton Demonstrated Supercapacitor Based Shuttle Charging in Seconds

    NICHICON SLB Small Lithium-Titanate Rechargeable Batteries

    Wk 40 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    September 23 – Interconnect, Passives & Electromechanical Components Market Insights

    Choosing the Right Noise Filters for Automotive Networks

    Ceramic Capacitors Supporting DC Link Filters

    KYOCERA AVX is Acquiring Bliley Technologies, A Global Leader in Low-Noise Frequency Control Products

    Resonant MLCC OBC Application Guide

    Bourns Releases New Compact Size High Current Ferrite Beads

    Skeleton Demonstrated Supercapacitor Based Shuttle Charging in Seconds

    NICHICON SLB Small Lithium-Titanate Rechargeable Batteries

    Wk 40 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

What Are DC-Blocking Capacitors, and Why Are They Important?

14.7.2023
Reading Time: 6 mins read
A A
180
VIEWS

This article based on Knowles Precision Devices blog explains function of DC-Blocking capacitors and its selection guide.

Electronic devices power our world and allow us to communicate. In all applications requiring signal integrity and accurate power amplification, blocking capacitors are used to provide clean waveforms and correctly amplified voltages.

RelatedPosts

Ceramic Capacitors Supporting DC Link Filters

Snubber Capacitors in Power Electronics

Benefits of Ceramic Capacitors as Bootstrap Capacitors

What Systems Rely on Stable Waveforms?

Generally, waveform systems can be broadly defined into power-related alternating current (AC) and communications-related radio frequency (RF) applications. Both employ waveforms to provide power or information. All of these devices require a blocking capacitor to ensure the waveform conforms to the desired specifications. Some standard electronic devices requiring blocking capacitors are:

  • Audio amplifiers
  • RF systems such as radio, broadcast television, and microwave communications devices
  • Power converters and amplifiers, AC-DC, DC-AC, and DC-DC
  • Communications connectors
  • Sensor interfaces
  • RF filters 

Why are DC-Blocking Capacitors Necessary?

In AC and RF waveforms, the desire is to have the waveform highs and lows navigate around a known base voltage. Typically, this is designed to be a waveform centered around zero volts. Some designs, like audio amplifiers, require the waveform to circulate a known direct current (DC) voltage. 

However, this desire to achieve a known center level can be thwarted by the unwanted injection of a DC voltage onto the line. Some sources of DC pollution may include the following:

  • Power supply residual voltage
  • Offset voltage generated by a device
  • Biasing circuits to control voltage levels between two (or more) levels
  • Electrochemical effects such as galvanic corrosion
  • Faulty or imbalanced components within a system

When any of these sources are added to (or subtracted from) the desired waveform, the center voltage is shifted into a range that corrupts or prevents data processing in RF applications or alters power amplification into unusable or dangerous ranges.

Figure 1. Capacitor physical diagram. Source.

How Blocking Capacitors Remove Unwanted DC Line Levels

A capacitor is a passive electronic device comprised of two plates separated by a dielectric. When power is applied, the plates accumulate their respective positive and negative charge until the capacitor reaches equilibrium with the supplied voltage. See Figure 1 for capacitor physical diagram and general capacitor symbol.

In the case of blocking capacitors, this device is placed in series with the load. Blocking an unwanted DC voltage occurs because the capacitor acts as an open to the DC voltage, not allowing it to pass through the dielectric. In Figure 2 below, capacitor C2 acts as a blocking capacitor in this voltage divider design with the output waveform around zero volts.

Any waveform on the line produces electromagnetic waves that transit the dielectric in inverse polarity to the originating wave. Thus, the DC voltage is blocked, and the wave, with a properly valued capacitor, circulates about zero volts, as desired. 

Figure 2. Voltage divider with blocking capacitor C2. Source.

In the communication world, RF signals can be transmitted over lines that require blocking capacitors to ensure the correct level is transmitted or received. For example, in coaxial lines with an inner core and outer sheath, the capacitor can be applied as an inner DC block or an outer DC block, or a capacitor can be applied as both an inner and outer DC block.

Figure 3. An example of a passive RC high pass filter.

How to Select the Correct Blocking Capacitor

To better understand how a capacitor acts in a DC-blocking (otherwise known as AC-coupling) application, and how to select the correct blocking capacitor, let’s think about the behavior of an RC high pass filter circuits. In Figure 3a, you can see the RC high pass filter consists of a capacitor in series and a resistor in parallel.

To find the 3dB frequency cutoff of this filter, you can use the formula in Figure 3b. When we plot the power that gets through this filter on a Bode plot (Figure 3c) we can see that the frequency has dropped by -3dB at the frequency cutoff we get in the formula and it drops off further at frequencies lower than the frequency cutoff, showing us how different capacitance values can attenuate low frequencies.

In practice, the above formula assumes ideal conditions. Real-world manufacturing processes introduce parasitic inductance that moves the equation to an approximation. But using this we can get a sense of the capacitance value required to pass frequencies we are interested in and to block frequencies we do not want. Any capacitance can block DC, but a designer should consider the minimum frequency they want to pass when selecting a capacitor value. 

Finding blocking capacitor solutions for complex real-world electronic systems requires a deep understanding of current flows. Figure 4 below shows a blocking capacitor system added to each side of a DC-DC step-down converter used in an electronic vehicle charging device.

Figure 4. DC-DC converter bypass capacitor configuration Source.

Multilayer ceramic capacitors (MLCCs) offer various DC-blocking solutions that can be tailored to design needs. Specific surface mount packages features very low equivalent series resistance (ESR) and equivalent series inductance (ESL).

Whether you’re designing for communications with frequencies from hertz to gigahertz, power and signal amplification systems, or ultra-sensitive sensors, MLCCs can remove unwanted DC levels from your design. Knowles engineers can also assist you in designing the optimum solution when you encounter complex challenges that a catalogue component won’t work for.

Source: Knowles Precision Devices

Related Posts

Capacitors

Ceramic Capacitors Supporting DC Link Filters

3.10.2023
2
Capacitors

Resonant MLCC OBC Application Guide

2.10.2023
16
Capacitors

Skeleton Demonstrated Supercapacitor Based Shuttle Charging in Seconds

2.10.2023
9

Upcoming Events

Oct 3
October 3 @ 12:00 - October 5 @ 14:00 EDT

Design and Test of Non-Hermetic Microelectronic

Oct 11
11:00 - 12:00 CEST

Stretchable Electronics

Oct 16
October 16 - October 19

Digital WE Days 2023 – Virtual Conference

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Coefficient of Linear Thermal Expansion on Polymers Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2023
2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.