Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

4DS Memristors Target ReRAMs

27.7.2017
Reading Time: 3 mins read
A A

source: EETimes article

published October 24th 2016, updated July 24th 2017

RelatedPosts

Advances in the Environmental Performance of Polymer Capacitors

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

LAKE WALES, Fla. — 4DS Memories Ltd. (West Perth, Western Australia) claims to have achieved 40-nanometer resistive random-access memories (ReRAMs) that are denser than flash and rival the recently reported Crossbar Inc.’s (San Francisco) ReRAM licensed to China.

“Crossbar only states that they are using 40nm design rules without disclosing the cell size which means that we can only guess that the linear dimension of the cell size is a multiple of 40nm. It is more important to realize that Crossbar is a filamentary ReRAM technology that is difficult to scale to small geometries,” Guido Amout, CEO and managing director of 4DS, told EE Times.

4DS claims its 40-nanometer ReRAM is a first, but many other labs besides 4DS and Crossbar are known for serious ReRAM efforts using memristors including Adesto Technologies, Elpida, Fujitsu, Global Foundries, Hewlett Packard, Hynix, IBM, Macronix, Nanya, NEC, Panasonic, Rambus, SanDisk, Samsung, Sharp, Sony, ST Microelectronics, Winbond, and several research-only labs like Imec collaborating with foundry partners like TSMC.

Flash is reaching the end of its ability to scale linearly, prompting the move to 3D, such as Samsung’s, Toshiba’s and Western Digital’s recent demonstrations of 64-layer stacked-die flash memories.

The bit-cell stack controls its resistance by the migration of oxygen ions between the opposing metal electrodes. (Source: 4DS)

Fig 1. The bit-cell stack controls its resistance by the migration of oxygen ions between the opposing metal electrodes.
(Source*: TMT Analytics. The report with the diagram can be found here: http://www.tmt-analytics.com.au/4ds-memory.html ) 

4DS, on the other hand, claims to be one-upping 3D flash by collaborating with Hitachi Global Storage Technologies (HGST is a Western Digital subsidiary) for the last two years. Together they pioneered a better-than-flash Interface Switching ReRAM using a non-filamentary technology with perovskites and migrating oxygen ions to economically give mobile clouds gigabyte storage capabilities. The HGST joint development agreement was renewed in July 2016 for another year in order to optimize its ReRAM’s scalability and cycling endurance, according to 4DS.

4DS's target market for its resistive random access memories (ReRAMs) is non-volatile cloud market with aims to give nearly instant access to mobile devices. (Source: 4DS)

Fig.2. 4DS’s target market for its resistive random access memories (ReRAMs) is non-volatile cloud market with aims to give nearly instant access to mobile devices. (Source: 4DS) 
4DS also claims to have invested only $12 million to research and develop its recent demonstration chips. The demo chips, 4DS claims, prove its ReRAM memory cells are faster, cheaper and lower power than 3-D flash, giving the company hope at carving out a segment of the $40 billion global market for flash.

For more information, read 4DS’s white paper Next-gen Cloud and DC storage technology.

— R. Colin Johnson, Advanced Technology Editor, EE Times

* the source of Fig 1 was originally mentioned EE Times and 4DS. However the original source is TMT Analytics, EPCI apologise for incorrect reference. 

Related

Recent Posts

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
24
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
18

Improving SMPS Performance with Thermal Interface Material

30.9.2025
12

Development of Nitrogen-Doped Graphene Supercapacitors 

30.9.2025
9

Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

29.9.2025
18

Efficient Power Converters: Duty Cycle vs Conduction Losses

29.9.2025
31

Life Cycle Assessment of a Graphene-Based Supercapacitor

26.9.2025
15

Advancements in Flexible End Terminations for Robust MLCCs in EV

26.9.2025
41

Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

18.9.2025
33

Researchers Enhanced 2D Ferromagnets Performance

16.9.2025
9

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version